Skip to main content
Log in

YTHDC2 Retards Cell Proliferation and Triggers Apoptosis in Papillary Thyroid Cancer by Regulating CYLD-Mediated Inactivation of Akt Signaling

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

N6-Methyladenosine (m6A) mRNA methylation modification is regarded as an important mechanism involved in diverse physiological processes. YT521-B homology (YTH) domain family members are associated with the tumorigenesis of several cancers. However, the role of YTHDC2 in papillary thyroid cancer (PTC) progression remains unknown. Results showed that YTHDC1, YTHDF1, YTHDF2, and YTHDF3 showed no observable difference in thyroid cancer samples. YTHDC2 was significantly downregulated in thyroid cancer samples and cells. YTHDC2 inhibited cell proliferation in PTC cells. YTHDC2 elicited apoptosis in PTC cells, as demonstrated by the elevated expression of pro-apoptotic factors cl-caspase-3/caspase-3 and Bcl-2-associated (Bax), and the reduced anti-apoptotic B cell lymphoma-2 (Bcl-2) expression. There was a positive correlation between YTHDC2 and cylindromatosis (CYLD) expression based on GEPIA database. YTHDC2 increased CYLD expression in PTC cells. CYLD knockdown abolished the effects of YTHDC2 on PTC cell proliferation and apoptosis. Additionally, YTHDC2 inactivated the protein kinase B (Akt) pathway by increasing CYLD in PTC cells. Overall, YTHDC2 inhibited cell proliferation and induced apoptosis in PTC cells by regulating CYLD-mediated inactivation of Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zheng, H., Wang, M., Jiang, L., Chu, H., Hu, J., Ning, J., et al. (2016). BRAF-activated long noncoding RNA modulates papillary thyroid carcinoma cell proliferation through regulating thyroid stimulating hormone receptor. Cancer Research and Treatment, 48, 698–707.

    Article  CAS  PubMed  Google Scholar 

  2. Cabanillas, M. E., McFadden, D. G., & Durante, C. (2016). Thyroid cancer. Lancet, 388, 2783–2795.

    Article  CAS  PubMed  Google Scholar 

  3. Kitahara, C. M., & Sosa, J. A. (2020). Understanding the ever-changing incidence of thyroid cancer. Nature Reviews Endocrinology, 16, 617–618.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siegel, R. L., & Miller, K. D. (2021). Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7–33.

    PubMed  Google Scholar 

  5. Fagin, J. A., & Wells, S. A., Jr. (2016). Biologic and clinical perspectives on thyroid cancer. New England Journal of Medicine, 375, 1054–1067.

    Article  CAS  PubMed  Google Scholar 

  6. Li, G., Lei, J., Peng, Q., Jiang, K., Chen, W., Zhao, W., et al. (2017). Lymph node metastasis characteristics of papillary thyroid carcinoma located in the isthmus: A single-center analysis. Medicine (Baltimore), 96, e7143.

    Article  PubMed  Google Scholar 

  7. Viola, D., Materazzi, G., Valerio, L., Molinaro, E., Agate, L., Faviana, P., et al. (2015). Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: Clinical implications derived from the first prospective randomized controlled single institution study. Journal of Clinical Endocrinology and Metabolism, 100, 1316–1324.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, B. S., Roundtree, I. A., & He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 18, 31–42.

    Article  CAS  PubMed  Google Scholar 

  9. Frye, M., & Harada, B. T. (2018). RNA modifications modulate gene expression during development. Science, 361, 1346–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liao, S., Sun, H., & Xu, C. (2018). YTH domain: A family of N(6)-methyladenosine (m(6)A) readers. Genomics, Proteomics & Bioinformatics, 16, 99–107.

    Article  CAS  Google Scholar 

  11. Liu, J., & Eckert, M. A. (2018). m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology, 20, 1074–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei, W., Ji, X., Guo, X., & Ji, S. (2017). Regulatory role of N(6)-methyladenosine (m(6) A) methylation in RNA processing and human diseases. Journal of Cellular Biochemistry, 118, 2534–2543.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Z. X., Li, L. M., Sun, H. L., & Liu, S. M. (2018). Link between m6A modification and cancers. Front Bioengineering and Biotechnology, 6, 89.

    Article  Google Scholar 

  14. Wang, T., Kong, S., Tao, M., & Ju, S. (2020). The potential role of RNA N6-methyladenosine in Cancer progression. Molecular Cancer, 19, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anita, R., Paramasivam, A., Priyadharsini, J. V., & Chitra, S. (2020). The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients. American Journal of Cancer Research, 10, 2546–2554.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanabe, A., Tanikawa, K., Tsunetomi, M., Takai, K., Ikeda, H., Konno, J., et al. (2016). RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Letters, 376, 34–42.

    Article  CAS  PubMed  Google Scholar 

  17. Hou, J., Shan, H., Zhang, Y., Fan, Y., & Wu, B. (2020). m(6)A RNA methylation regulators have prognostic value in papillary thyroid carcinoma. American Journal of Otolaryngology, 41, 102547.

    Article  CAS  PubMed  Google Scholar 

  18. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45, W98-w102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, J., Tan, L., Jia, B., Yu, X., Yao, R., Ouyang, N., et al. (2021). Downregulation of m(6)A reader YTHDC2 promotes the proliferation and migration of malignant lung cells via CYLD/NF-κB pathway. International Journal of Biological Sciences, 17, 2633–2651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Viglietto, G., Amodio, N., Malanga, D., Scrima, M., & De Marco, C. (2011). Contribution of PKB/AKT signaling to thyroid cancer. Frontiers in Bioscience (Landmark Ed), 16, 1461–1487.

    Article  CAS  Google Scholar 

  21. Jung, C. K., Little, M. P., Lubin, J. H., Brenner, A. V., Wells, S. A., Jr., Sigurdson, A. J., et al. (2014). The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. Journal of Clinical Endocrinology and Metabolism, 99, E276-285.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, S. K., Lee, J. H., Bae, S. Y., Kim, J., Kim, M., Lee, H. C., et al. (2015). Lateral neck sentinel lymph node biopsy in papillary thyroid carcinoma, is it really necessary? A randomized, controlled study. Surgery, 157, 518–525.

    Article  PubMed  Google Scholar 

  23. Ma, L., Chen, T., Zhang, X., Miao, Y., Tian, X., Yu, K., et al. (2021). The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biology, 38, 101801.

    Article  CAS  PubMed  Google Scholar 

  24. He, J. J., Li, Z., Rong, Z. X., Gao, J., Mu, Y., Guan, Y. D., et al. (2020). m(6)A reader YTHDC2 promotes radiotherapy resistance of nasopharyngeal carcinoma via activating IGF1R/AKT/S6 signaling axis. Frontiers in Oncology, 10, 1166.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, N., Ying, P., Tian, J., Wang, X., Mei, S., Zou, D., et al. (2020). Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis, 41, 761–768.

    Article  CAS  PubMed  Google Scholar 

  26. Li, Y., Zheng, J. N., Wang, E. H., Gong, C. J., Lan, K. F., & Ding, X. (2020). The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma. PeerJ, 8, e10385.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bignell, G. R., Warren, W., Seal, S., Takahashi, M., Rapley, E., Barfoot, R., et al. (2000). Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genetics, 25, 160–165.

    Article  CAS  PubMed  Google Scholar 

  28. Komander, D., Lord, C. J., Scheel, H., Swift, S., Hofmann, K., Ashworth, A., et al. (2008). The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Molecular Cell, 29, 451–464.

    Article  CAS  PubMed  Google Scholar 

  29. Urbanik, T., Koehler, B. C., Wolpert, L., Elßner, C., Scherr, A. L., Longerich, T., et al. (2014). CYLD deletion triggers nuclear factor-κB-signaling and increases cell death resistance in murine hepatocytes. World Journal of Gastroenterology, 20, 17049–17064.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sun, S. C. (2010). CYLD: A tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death and Differentiation, 17, 25–34.

    Article  CAS  PubMed  Google Scholar 

  31. Nikolaou, K., Tsagaratou, A., Eftychi, C., Kollias, G., Mosialos, G., & Talianidis, I. (2012). Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell, 21, 738–750.

    Article  CAS  PubMed  Google Scholar 

  32. Massoumi, R. (2011). CYLD: A deubiquitination enzyme with multiple roles in cancer. Future Oncology, 7, 285–297.

    Article  CAS  PubMed  Google Scholar 

  33. Massoumi, R., Kuphal, S., Hellerbrand, C., Haas, B., Wild, P., Spruss, T., et al. (2009). Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. Journal of Experimental Medicine, 206, 221–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hellerbrand, C., Bumes, E., Bataille, F., Dietmaier, W., Massoumi, R., & Bosserhoff, A. K. (2007). Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis, 28, 21–27.

    Article  CAS  PubMed  Google Scholar 

  35. Hayashi, M., Jono, H., Shinriki, S., Nakamura, T., Guo, J., Sueta, A., et al. (2014). Clinical significance of CYLD downregulation in breast cancer. Breast Cancer Research and Treatment, 143, 447–457.

    Article  CAS  PubMed  Google Scholar 

  36. Li, D., Jian, W., Wei, C., Song, H., Gu, Y., Luo, Y., et al. (2014). Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer. International Journal of Clinical and Experimental Pathology, 7, 7672–7680.

    PubMed  PubMed Central  Google Scholar 

  37. Saji, M., & Ringel, M. D. (2010). The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Molecular and Cellular Endocrinology, 321, 20–28.

    Article  CAS  PubMed  Google Scholar 

  38. Bartholomeusz, C., & Gonzalez-Angulo, A. M. (2012). Targeting the PI3K signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16, 121–130.

    Article  CAS  PubMed  Google Scholar 

  39. Petrulea, M. S., Plantinga, T. S., Smit, J. W., Georgescu, C. E., & Netea-Maier, R. T. (2015). PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treatment Reviews, 41, 707–713.

    Article  CAS  PubMed  Google Scholar 

  40. Lin, S. F., Huang, Y. Y., Lin, J. D., Chou, T. C., Hsueh, C., & Wong, R. J. (2012). Utility of a PI3K/mTOR inhibitor (NVP-BEZ235) for thyroid cancer therapy. PLoS ONE, 7, e46726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guangying Zhou and Shasha Wang conducted the experiments, analyzed the results, and drafted the paper.

Corresponding author

Correspondence to Shasha Wang.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants performed by any of the authors.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Wang, S. YTHDC2 Retards Cell Proliferation and Triggers Apoptosis in Papillary Thyroid Cancer by Regulating CYLD-Mediated Inactivation of Akt Signaling. Appl Biochem Biotechnol 196, 588–603 (2024). https://doi.org/10.1007/s12010-023-04540-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04540-8

Keywords

Navigation