Skip to main content

Advertisement

Log in

Clinical significance of CYLD downregulation in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cylindromatosis (CYLD) is a tumor suppressor gene that is mutated in familial cylindromatosis, a rare autosomal dominant disorder associated with numerous benign skin adnexal tumors. CYLD is now known to regulate various signaling pathways, including transforming growth factor-β signaling, Wnt/β-catenin signaling, and NF-κB signaling by deubiquitinating upstream regulatory factors. Downregulation of CYLD has been reported in several malignancies; however, the clinical significance of CYLD expression in many malignancies, including breast cancer, remains to be elucidated. This study investigated the clinical significance of CYLD in breast cancer and its roles in tumor progression. We evaluated CYLD expression in matched normal breast tissue samples and tumor breast tissue samples from 26 patients with breast cancer and in a series of breast cancer cell lines. In addition, by means of immunohistochemistry, we investigated CYLD protein expression and its clinical significance in 244 breast cancer cases. We also analyzed the effects of CYLD repression or overexpression on breast cancer cell viability, cell migration, and NF-κB activity with or without receptor activator of NF-κB ligand (RANKL) stimulation. Breast cancer tissues demonstrated significantly reduced CYLD mRNA expression compared with normal breast tissues. Downregulation of CYLD promoted cell survival and migratory activities through NF-κB activation, whereas CYLD overexpression inhibited those activities in MDA-MB-231 cells. As an important finding, CYLD overexpression also inhibited RANKL-induced NF-κB activation. Our immunohistochemical analysis revealed that reduced CYLD protein expression was significantly correlated with estrogen receptor negativity, high Ki-67 index, high nuclear grade, decreased disease-free survival, and reduced breast cancer-specific survival in primary breast cancer. Moreover, reduced CYLD expression was an independent factor for poor prognosis in breast cancer. CYLD downregulation may promote breast cancer metastasis via NF-κB activation, including RANKL signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CYLD:

Cylindromatosis

RANKL:

NF-κB ligand

HER2:

Human epidermal growth factor receptor 2

ER:

Estrogen receptor

PgR:

Progesterone receptor

HMEC:

Human mammary epithelial cells

References

  1. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25(2):160–165. doi:10.1038/76006

    Article  CAS  PubMed  Google Scholar 

  2. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424(6950):801–805. doi:10.1038/nature01802

    Article  CAS  PubMed  Google Scholar 

  3. Wang WY, Lim JH, Li JD (2012) Synergistic and feedback signaling mechanisms in the regulation of inflammation in respiratory infections. Cell Mol Immunol 9(2):131–135

    Article  PubMed  Google Scholar 

  4. Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, Matsuno T, Xu X, Huang Y, Zhang W, Park SH, Kim YI, Choi YD, Shen H, Heo KS, Xu H, Bourne P, Koga T, Yan C, Wang B, Chen LF, Feng XH, Li JD (2012) CYLD negatively regulates transforming growth factor-beta-signalling via deubiquitinating Akt. Nat Commun 3:771

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM (2010) Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell 37(5):607–619

    Article  CAS  PubMed  Google Scholar 

  6. Harhaj EW, Dixit VM (2012) Regulation of NF-kappaB by deubiquitinases. Immunol Rev 246(1):107–124. doi:10.1111/j.1600-065X.2012.01100.x

    Article  PubMed Central  PubMed  Google Scholar 

  7. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424(6950):793–796. doi:10.1038/nature01803

    Article  CAS  PubMed  Google Scholar 

  8. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424(6950):797–801. doi:10.1038/nature01811

    Article  CAS  PubMed  Google Scholar 

  9. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hellerbrand C, Bumes E, Bataille F, Dietmaier W, Massoumi R, Bosserhoff AK (2007) Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28(1):21–27

    Article  CAS  PubMed  Google Scholar 

  11. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R (2006) Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125(4):665–677

    Article  CAS  PubMed  Google Scholar 

  12. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  Google Scholar 

  13. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  CAS  PubMed  Google Scholar 

  14. Yamaguchi N, Ito T, Azuma S, Ito E, Honma R, Yanagisawa Y, Nishikawa A, Kawamura M, Imai J, Watanabe S, Semba K, Inoue J (2009) Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci 100(9):1668–1674

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, Benz CC (2005) Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 37(5):1130–1144

    Article  CAS  PubMed  Google Scholar 

  16. Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, Iglehart JD (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 101(27):10137–10142. doi:10.1073/pnas.0403621101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE (1997) Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 100(12):2952–2960. doi:10.1172/JCI119848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436

    Article  CAS  PubMed  Google Scholar 

  19. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114(4):569–581. doi:10.1172/JCI21358

    CAS  PubMed Central  PubMed  Google Scholar 

  20. deGraffenried LA, Chandrasekar B, Friedrichs WE, Donzis E, Silva J, Hidalgo M, Freeman JW, Weiss GR (2004) NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol 15(6):885–890

    Article  CAS  PubMed  Google Scholar 

  21. Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I (2002) p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 1(5):493–503

    Article  CAS  PubMed  Google Scholar 

  22. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5(4):412–417. doi:10.1038/7410

    Article  PubMed  Google Scholar 

  23. Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J (2013) NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun 4:2299

    PubMed  Google Scholar 

  24. Kendellen MF, Bradford JW, Lawrence CL, Clark KS, Baldwin AS (2013) Canonical and non-canonical NF-kappaB signaling promotes breast cancer tumor-initiating cells. Oncogene

  25. Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, Hall CL, Palanisamy N, Heath AN, Tawakkol N, Luther TK, Clouthier SG, Chadwick WA, Day ML, Kleer CG, Thomas DG, Hayes DF, Korkaya H, Wicha MS (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73(5):1635–1646

    Article  CAS  PubMed  Google Scholar 

  26. Hinohara K, Kobayashi S, Kanauchi H, Shimizu S, Nishioka K, Tsuji E, Tada K, Umezawa K, Mori M, Ogawa T, Inoue J, Tojo A, Gotoh N (2012) ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc Natl Acad Sci USA 109(17):6584–6589

    Article  CAS  PubMed  Google Scholar 

  27. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, Ojeifo J, Jiao X, Yeow WS, Katiyar S, Shirley LA, Joyce D, Lisanti MP, Albanese C, Pestell RG (2010) The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 70(24):10464–10473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kai K, Arima Y, Kamiya T, Saya H (2010) Breast cancer stem cells. Breast Cancer 17(2):80–85. doi:10.1007/s12282-009-0176-y

    Article  PubMed  Google Scholar 

  29. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18(7):1133–1144

    Article  CAS  PubMed  Google Scholar 

  30. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittliff JL, Wolff AC (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–2795

    Article  PubMed  Google Scholar 

  31. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145

    Article  CAS  PubMed  Google Scholar 

  32. Affara NI, Coussens LM (2007) IKKalpha at the crossroads of inflammation and metastasis. Cell 129(1):25–26

    Article  CAS  PubMed  Google Scholar 

  33. Maass N, Hojo T, Rosel F, Ikeda T, Jonat W, Nagasaki K (2001) Down regulation of the tumor suppressor gene maspin in breast carcinoma is associated with a higher risk of distant metastasis. Clin Biochem 34(4):303–307

    Article  CAS  PubMed  Google Scholar 

  34. Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A, Climent F, Soler MT, Munoz P, Vinals F, Tometsko M, Branstetter D, Dougall WC, Gonzalez-Suarez E (2012) RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res 72(11):2879–2888

    Article  CAS  PubMed  Google Scholar 

  35. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470(7335):548–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, Hanada R, Joshi PA, Aliprantis A, Glimcher L, Pasparakis M, Khokha R, Ormandy CJ, Widschwendter M, Schett G, Penninger JM (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468(7320):98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468(7320):103–107

    Article  CAS  PubMed  Google Scholar 

  38. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299):798–802

    Article  CAS  PubMed  Google Scholar 

  39. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123(3):725–731. doi:10.1007/s10549-009-0674-9

    Article  PubMed  Google Scholar 

  40. Jono H, Lim JH, Chen LF, Xu H, Trompouki E, Pan ZK, Mosialos G, Li JD (2004) NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem 279(35):36171–36174. doi:10.1074/jbc.M406638200

    Article  CAS  PubMed  Google Scholar 

  41. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440(7084):692–696

    Article  CAS  PubMed  Google Scholar 

  42. Ohshiba T, Miyaura C, Inada M, Ito A (2003) Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br J Cancer 88(8):1318–1326. doi:10.1038/sj.bjc.6600858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Brown JE, Coleman RE (2012) Denosumab in patients with cancer-a surgical strike against the osteoclast. Nat Rev Clin Oncol 9(2):110–118

    Article  CAS  PubMed  Google Scholar 

  44. Cross SS, Harrison RF, Balasubramanian SP, Lippitt JM, Evans CA, Reed MW, Holen I (2006) Expression of receptor activator of nuclear factor kappabeta ligand (RANKL) and tumour necrosis factor related, apoptosis inducing ligand (TRAIL) in breast cancer, and their relations with osteoprotegerin, oestrogen receptor, and clinicopathological variables. J Clin Pathol 59(7):716–720

    Article  CAS  PubMed  Google Scholar 

  45. Bhatia P, Sanders MM, Hansen MF (2005) Expression of receptor activator of nuclear factor-kappaB is inversely correlated with metastatic phenotype in breast carcinoma. Clin Cancer Res 11(1):162–165

    CAS  PubMed  Google Scholar 

  46. Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118(5):1858–1866. doi:10.1172/JCI34257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Seiji Okada and Dr. Manabu Taura for supplying pGL4b and phRG-TK vectors; Y. Ogasawara, K. Kai, M. Imamoto, E. Nakamura, and H. Katsura for excellent technical support; Dr. K. Iyama, Dr. Y. Honda, and Dr. T. Asato for their excellent pathological diagnosis. The authors’ work was supported by a Grand-in-Aid for Scientific Research (A) 24249036 (Y. Ando), by Grand-in-Aid for Young Scientists (B) 23790091 (H. Jono) and (B) 24792238 (S. Shinriki) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

The authors disclosed no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Shinriki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, M., Jono, H., Shinriki, S. et al. Clinical significance of CYLD downregulation in breast cancer. Breast Cancer Res Treat 143, 447–457 (2014). https://doi.org/10.1007/s10549-013-2824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2824-3

Keywords

Navigation