Skip to main content

Advertisement

Log in

Tapping on the Potential of Hyaluronic Acid: from Production to Application

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The manufacture, purification, and applications of hyaluronic acid (HA) are discussed in this article. Concerning the growing need for affordable, high-quality HA, it is essential to consider diverse production techniques using renewable resources that pose little risk of cross-contamination. Many microorganisms can now be used to produce HA without limiting the availability of raw materials and in an environmentally friendly manner. The production of HA has been associated with Streptococci A and C, explicitly S. zooepidemicus and S. equi. Different fermentation techniques, including the continuous, batch, fed-batch, and repeated batch culture, have been explored to increase the formation of HA, particularly from S. zooepidemicus. The topic of current interest also involves a complex broth rich in metabolites and residual substrates, intensifying downstream processes to achieve high recovery rates and purity. Although there are already established methods for commercial HA production, the anticipated growth in trade and the diversification of application opportunities necessitate the development of new procedures to produce HA with escalated productivity, specified molecular weights, and purity. In this report, we have enacted the advancement of HA technical research by analyzing bacterial biomanufacturing elements, upstream and downstream methodologies, and commercial-scale HA scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

HA:

Hyaluronic acid

MW:

Molecular weight

OA:

Osteoarthritis

MWCO:

Molecular weight cutoff

UDP:

Uridine diphosphate

TMP:

Transmembrane pressure

OVD:

Ophthalmic viscoelastic devices

GAG:

Glycosaminoglycan

References

  1. Abdallah, M. M., Fernández, N., Matias, A. A., & do Rosário Bronze, M. (2020). Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydrate Polymers, 243, 116441.

    Article  PubMed  CAS  Google Scholar 

  2. Akdamar, H. A., Sarıözlü, N. Y., Özcan, A. A., Ersöz, A., Denizli, A., & Say, R. (2009). Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads. Materials Science and Engineering: C, 29, 1404–1408.

    Article  CAS  Google Scholar 

  3. Allison, D. D., & Grande-Allen, K. J. (2006). Hyaluronan: A powerful tissue engineering tool. Tissue engineering, 12, 2131–2140.

    Article  PubMed  CAS  Google Scholar 

  4. Altman, R. (1998). Intra-articular sodium hyaluronate (Hyalgan®) in. The Journal of Rheumatology, 25, 2203–2212.

    PubMed  CAS  Google Scholar 

  5. Amado, I. R., Vázquez, J. A., Pastrana, L., & Teixeira, J. A. (2016). Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry, 198, 54–61.

    Article  PubMed  CAS  Google Scholar 

  6. Amagai, I., Tashiro, Y., & Ogawa, H. (2009). Improvement of the extraction procedure for hyaluronan from fish eyeball and the molecular characterization. Fisheries Science, 75, 805–810.

    Article  CAS  Google Scholar 

  7. Armstrong, D., Cooney, M., & Johns, M. (1997). Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Applied Microbiology and Biotechnology, 47, 309–312.

    Article  CAS  Google Scholar 

  8. Arslan, N. P., & Aydogan, M. N. (2021). Evaluation of sheep wool protein hydrolysate and molasses as low-cost fermentation substrates for hyaluronic acid production by Streptococcus zooepidemicus ATCC 35246. Waste and Biomass Valorization, 12, 925–935.

    Article  CAS  Google Scholar 

  9. Auzenne, E., Ghosh, S. C., Khodadadian, M., Rivera, B., Farquhar, D., Price, R. E., Ravoori, M., Kundra, V., Freedman, R. S., & Klostergaard, J. (2007). Hyaluronic acid-paclitaxel: antitumor efficacy against CD44 (+) human ovarian carcinoma xenografts. Neoplasia, 9, 479–486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Badri, A., Raman, K., & Jayaraman, G. (2019). Uncovering novel pathways for enhancing hyaluronan synthesis in recombinant Lactococcus lactis: Genome-scale metabolic modeling and experimental validation. Processes, 7, 343.

    Article  CAS  Google Scholar 

  11. Bajaj, G., Kim, M. R., Mohammed, S. I., & Yeo, Y. (2012). Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. Journal of Controlled Release, 158, 386–392.

    Article  PubMed  CAS  Google Scholar 

  12. Balazs, E., & Sweeney, D. (1968). New and controversial aspects of retinal detachment. Edited by: McPherson A. Harper and Row.

    Google Scholar 

  13. Balazs, E. A. (1979). Ultrapure hyaluronic acid and the use thereof. Google Patents.

    Google Scholar 

  14. Balazs, E. A. and Laurent, T. (1998) Chemistry, biology and medical applications of hyaluronan and its derivatives .

    Google Scholar 

  15. Barbucci, R., Lamponi, S., Borzacchiello, A., Ambrosio, L., Fini, M., Torricelli, P., & Giardino, R. (2002). Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials, 23, 4503–4513.

    Article  PubMed  CAS  Google Scholar 

  16. Barth, H., Crafoord, S., Andréasson, S., & Ghosh, F. (2016). A cross-linked hyaluronic acid hydrogel (Healaflow®) as a novel vitreous substitute. Graefe's Archive for Clinical and Experimental Ophthalmology, 254, 697–703.

    Article  PubMed  CAS  Google Scholar 

  17. Bates, E., Harper, G., Lowther, D., & Preston, B. (1984). Effect of oxygen-derived reactive species on cartilage proteoglycan-hyaluronate aggregates. Biochemistry international, 8, 629–637.

    PubMed  CAS  Google Scholar 

  18. Baumann, L. S., & Baumann, L. (2009). Cosmetic dermatology. McGraw-Hill Professional Publishing.

    Google Scholar 

  19. Bayer, I. S. (2020). Hyaluronic acid and controlled release: A review. Molecules, 25, 2649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Beck, R., Stachs, O., Koschmieder, A., Mueller-Lierheim, W. G., Peschel, S., & van Setten, G.-B. (2019). Hyaluronic acid as an alternative to autologous human serum eye drops: Initial clinical results with high-molecular-weight hyaluronic acid eye drops. Case Reports in Ophthalmology, 10, 244–255.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Belzile, E. L., Deakon, R. T., Vannabouathong, C., Bhandari, M., Lamontagne, M., & McCormack, R. (2017). Cost-utility of a single-injection combined corticosteroid-hyaluronic acid formulation vs a 2-injection regimen of sequential corticosteroid and hyaluronic acid injections. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 10, 1179544117712993.

    PubMed  PubMed Central  Google Scholar 

  22. Boeriu, C. G., Springer, J., Kooy, F. K., van den Broek, L. A., & Eggink, G. (2013). Production methods for hyaluronan. International Journal of Carbohydrate Chemistry, 2013.

  23. Bronstone, A., Neary, J. T., Lambert, T. H., & Dasa, V. (2019). Supartz (sodium hyaluronate) for the treatment of knee osteoarthritis: A review of efficacy and safety. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 12, 1179544119835221.

    PubMed  PubMed Central  Google Scholar 

  24. Bui, H. T., Friederich, A. R., Li, E., Prawel, D. A., & James, S. P. (2018). Hyaluronan enhancement of expanded polytetrafluoroethylene cardiovascular grafts. Journal of Biomaterials Applications, 33, 52–63.

    Article  PubMed  CAS  Google Scholar 

  25. Cai, S., Thati, S., Bagby, T. R., Diab, H.-M., Davies, N. M., Cohen, M. S., & Forrest, M. L. (2010). Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. Journal of Controlled Release, 146, 212–218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Carracedo, G., Villa-Collar, C., Martin-Gil, A., Serramito, M., & Santamaría, L. (2018). Comparison between viscous teardrops and saline solution to fill orthokeratology contact lenses before overnight wear. Eye & contact lens, 44, S307–S311.

    Article  Google Scholar 

  27. Castro-Muñoz, R., García-Depraect, O., León-Becerril, E., Cassano, A., Conidi, C., & Fíla, V. (2021). Recovery of protein-based compounds from meat by-products by membrane-assisted separations: A review. Journal of Chemical Technology & Biotechnology, 96, 3025–3042.

    Article  Google Scholar 

  28. Chahuki, F. F., Aminzadeh, S., Jafarian, V., Tabandeh, F., & Khodabandeh, M. (2019). Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. International Journal of Biological Macromolecules, 121, 870–881.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, S.-J., Chen, J.-L., Huang, W.-C., & Chen, H.-L. (2009). Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean Journal of Chemical Engineering, 26, 428–432.

    Article  CAS  Google Scholar 

  30. Chen, W. Y., Marcellin, E., Hung, J., & Nielsen, L. K. (2009). Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. Journal of Biological Chemistry, 284, 18007–18014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cheng, F., Yu, H., & Stephanopoulos, G. (2019). Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metabolic Engineering, 55, 276–289.

    Article  PubMed  CAS  Google Scholar 

  32. Chien, L.-J., & Lee, C.-K. (2007). Hyaluronic acid production by recombinant Lactococcus lactis. Applied Microbiology and Biotechnology, 77, 339–346.

    Article  PubMed  CAS  Google Scholar 

  33. Chien, L. J., & Lee, C. K. (2007). Enhanced hyaluronic acid production in Bacillussubtilis by coexpressing bacterial hemoglobin. Biotechnology Progress, 23, 1017–1022.

    PubMed  CAS  Google Scholar 

  34. Chis, A. A., Dobrea, C., Morgovan, C., Arseniu, A. M., Rus, L. L., Butuca, A., Juncan, A. M., Totan, M., Vonica-Tincu, A. L., & Cormos, G. (2020). Applications and limitations of dendrimers in biomedicine. Molecules, 25, 3982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Choi, S., Choi, W., Kim, S., Lee, S.-Y., Noh, I., & Kim, C.-W. (2014). Purification and biocompatibility of fermented hyaluronic acid for its applications to biomaterials. Biomaterials Research, 18, 1–10.

    Article  Google Scholar 

  36. Chong, B. F., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 66, 341–351.

    Article  PubMed  CAS  Google Scholar 

  37. Chong, B. F., & Nielsen, L. K. (2003). Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochemical Engineering Journal, 16, 153–162.

    Article  CAS  Google Scholar 

  38. Ciriminna, R., Scurria, A., & Pagliaro, M. (2021). Microbial production of hyaluronic acid: the case of an emergent technology in the bioeconomy. Biofuels, Bioproducts and Biorefining, 15, 1604–1610.

    Article  CAS  Google Scholar 

  39. Cleland, R. L., & Sherblom, A. P. (1977). Isolation and physical characterization of hyaluronic acid prepared from bovine nasal septum by cetylpyridinium chloride precipitation. Journal of Biological Chemistry, 252, 420–426.

    Article  PubMed  CAS  Google Scholar 

  40. Cowman, M. K., Lee, H.-G., Schwertfeger, K. L., McCarthy, J. B., & Turley, E. A. (2015). The content and size of hyaluronan in biological fluids and tissues. Frontiers in Immunology, 6, 261.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cui, X., Huang, C., Chen, Z., Zhang, M., Liu, C., Su, K., Wang, J., Li, L., Wang, R., & Li, B. (2021). Hyaluronic acid facilitates bone repair effects of calcium phosphate cement by accelerating osteogenic expression. Bioactive Materials, 6, 3801–3811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. De Bartolo, L., Leindlein, A., Hofmann, D., Bader, A., de Grey, A., Curcio, E., & Drioli, E. (2012). Bio-hybrid organs and tissues for patient therapy: A future vision for 2030. Chemical Engineering and Processing: Process Intensification, 51, 79–87.

    Article  Google Scholar 

  43. de Oliveira, J. D., Carvalho, L. S., Gomes, A. M. V., Queiroz, L. R., Magalhães, B. S., & Parachin, N. S. (2016). Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microbial Cell Factories, 15, 1–19.

    Article  Google Scholar 

  44. DeAngelis, P. L., Jing, W., Drake, R. R., & Achyuthan, A. M. (1998). Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. Journal of Biological Chemistry, 273, 8454–8458.

    Article  PubMed  CAS  Google Scholar 

  45. DeAngelis, P. L., Papaconstantinou, J., & Weigel, P. H. (1993). Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. Journal of Biological Chemistry, 268, 14568–14571.

    Article  PubMed  CAS  Google Scholar 

  46. Don, M. M., & Shoparwe, N. F. (2010). Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochemical Engineering Journal, 49, 95–103.

    Article  CAS  Google Scholar 

  47. Dovedytis, M., Liu, Z. J., & Bartlett, S. (2020). Hyaluronic acid and its biomedical applications: A review. Engineered Regeneration, 1, 102–113.

    Article  Google Scholar 

  48. Dubashynskaya, N., Poshina, D., Raik, S., Urtti, A., & Skorik, Y. A. (2019). Polysaccharides in ocular drug delivery. Pharmaceutics, 12, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fagien, S., & Cassuto, D. (2012). Reconstituted injectable hyaluronic acid: expanded applications in facial aesthetics and additional thoughts on the mechanism of action in cosmetic medicine. Plastic and Reconstructive Surgery, 130, 208–217.

    Article  PubMed  CAS  Google Scholar 

  50. Fallacara, A., Baldini, E., Manfredini, S., & Vertuani, S. (2018). Hyaluronic acid in the third millennium. Polymers, 10, 701.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Flores-Méndez, D. A., Ramos-Ibarra, J. R., Toriz, G., Arriola-Guevara, E., Guatemala-Morales, G., & Corona-González, R. I. (2021). Bored coffee beans for production of hyaluronic acid by Streptococcus zooepidemicus. Fermentation, 7, 121.

    Article  Google Scholar 

  52. Fraser, J. R. E., Laurent, T. C., & Laurent, U. (1997). Hyaluronan: its nature, distribution, functions and turnover. Journal of internal medicine, 242, 27–33.

    Article  PubMed  CAS  Google Scholar 

  53. Gedikli, S., Güngör, G., Toptaş, Y., Sezgin, D. E., Demirbilek, M., Yazıhan, N., Aytar Çelik, P., Denkbaş, E. B., Bütün, V., & Çabuk, A. (2018). Optimization of hyaluronic acid production and its cytotoxicity and degradability characteristics. Preparative Biochemistry and Biotechnology, 48, 610–618.

    Article  PubMed  CAS  Google Scholar 

  54. Ghosh, P., Holbert, C., Read, R., & Armstrong, S. (1995). Hyaluronic acid (hyaluronan) in experimental osteoarthritis. The Journal of rheumatology, 43, 155–157.

    PubMed  CAS  Google Scholar 

  55. Goa, K. L., & Benfield, P. (1994). Hyaluronic acid. Drugs, 47, 536–566.

    Article  PubMed  CAS  Google Scholar 

  56. Gözke, G., Kirschhöfer, F., Prechtl, C., Brenner-Weiss, G., Krumov, N. V., Obst, U., & Posten, C. (2017). Electrofiltration improves dead-end filtration of hyaluronic acid and presents an alternative downstream processing step that overcomes technological challenges of conventional methods. Engineering in Life Sciences, 17, 970–975.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Grundmann, M., Rothenhöfer, M., Bernhardt, G., Buschauer, A., & Matysik, F.-M. (2012). Fast counter-electroosmotic capillary electrophoresis–time-of-flight mass spectrometry of hyaluronan oligosaccharides. Analytical and Bioanalytical Chemistry, 402, 2617–2623.

    Article  PubMed  CAS  Google Scholar 

  58. Gupta, S., Hawker, G., Laporte, A., Croxford, R., & Coyte, P. C. (2005). The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology, 44, 1531–1537.

    Article  PubMed  CAS  Google Scholar 

  59. Hadidi, M., Buckley, J. J., & Zydney, A. L. (2016). Effect of electrostatic interactions on the ultrafiltration behavior of charged bacterial capsular polysaccharides. Biotechnology Progress, 32, 1531–1538.

    Article  PubMed  CAS  Google Scholar 

  60. Han, H.-Y., Jang, S.-H., Kim, E.-C., Park, J.-K., Han, Y.-J., Lee, C., Park, H.-S., Kim, Y.-C., & Park, H.-J. (2009). Microorganism producing hyaluronic acid and purification method of hyaluronic acid. Google Patents.

    Google Scholar 

  61. Hong, M., Sudor, J., Stefansson, M., & Novotny, M. V. (1998). High-resolution studies of hyaluronic acid mixtures through capillary gel electrophoresis. Analytical Chemistry, 70, 568–573.

    Article  PubMed  CAS  Google Scholar 

  62. How, K. N., Yap, W. H., Lim, C. L. H., Goh, B. H., & Lai, Z. W. (2020). Hyaluronic acid-mediated drug delivery system targeting for inflammatory skin diseases: A mini review. Frontiers in Pharmacology, 11, 1105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25, 766–772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Huang, W.-C., Chen, S.-J., & Chen, T.-L. (2008). Production of hyaluronic acid by repeated batch fermentation. Biochemical Engineering Journal, 40, 460–464.

    Article  CAS  Google Scholar 

  65. Izawa, N., Hanamizu, T., Sone, T., & Chiba, K. (2010). Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk. Journal of Bioscience and Bioengineering, 109, 356–360.

    Article  PubMed  CAS  Google Scholar 

  66. Izawa, N., Serata, M., Sone, T., Omasa, T., & Ohtake, H. (2011). Hyaluronic acid production by recombinant Streptococcus thermophilus. Journal of Bioscience and Bioengineering, 111, 665–670.

    Article  PubMed  CAS  Google Scholar 

  67. Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., Feig, C., Nakagawa, T., Caldwell, M. E., & Zecchini, H. I. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120.

    Article  PubMed  CAS  Google Scholar 

  68. Jagannath, S., & Ramachandran, K. (2010). Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochemical Engineering Journal, 48, 148–158.

    Article  CAS  Google Scholar 

  69. Jeong, E., Shim, W. Y., & Kim, J. H. (2014). Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology, 185, 28–36.

    Article  PubMed  CAS  Google Scholar 

  70. Jiang, P., Li, X., Thompson, C. B., Huang, Z., Araiza, F., Osgood, R., Wei, G., Feldmann, M., Frost, G. I., & Shepard, H. M. (2012). Effective targeting of the tumor microenvironment for cancer therapy. Anticancer Research, 32, 1203–1212.

    PubMed  CAS  Google Scholar 

  71. Jing, W., & DeAngelis, P. L. (2000). Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology, 10, 883–889.

    Article  PubMed  CAS  Google Scholar 

  72. Jing, W., & DeAngelis, P. L. (2004). Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. Journal of Biological Chemistry, 279, 42345–42349.

    Article  PubMed  CAS  Google Scholar 

  73. Kakehi, K., Kinoshita, M., & Yasueda, S.-I. (2003). Hyaluronic acid: separation and biological implications. Journal of Chromatography B, 797, 347–355.

    Article  CAS  Google Scholar 

  74. Kanala, J. R., Panati, K., & Narala, V. R. (2011). Efficient recovery of hyaluronic acid from highly viscous culture broth. IUP Journal of Life Sciences, 5, 15–20.

    Google Scholar 

  75. Kanchwala, S. K., Holloway, L., & Bucky, L. P. (2005). Reliable soft tissue augmentation: A clinical comparison of injectable soft-tissue fillers for facial-volume augmentation. Annals of Plastic Surgery, 55, 30–35.

    Article  PubMed  CAS  Google Scholar 

  76. Kim, J. H., Moon, M. J., Kim, D. Y., Heo, S. H., & Jeong, Y. Y. (2018). Hyaluronic acid-based nanomaterials for cancer therapy. Polymers, 10, 1133.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim, K., Choi, H., Choi, E. S., Park, M.-H., & Ryu, J.-H. (2019). Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics, 11, 301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kim, S., Moon, M. J., Poilil Surendran, S., & Jeong, Y. Y. (2019). Biomedical applications of hyaluronic acid-based nanomaterials in hyperthermic cancer therapy. Pharmaceutics, 11, 306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kogan, G., Šoltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29, 17–25.

    Article  PubMed  CAS  Google Scholar 

  80. Kultti, A., Li, X., Jiang, P., Thompson, C. B., Frost, G. I., & Shepard, H. M. (2012). Therapeutic targeting of hyaluronan in the tumor stroma. Cancers, 4, 873–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lago, G., Oruna, L., Cremata, J. A., Pérez, C., Coto, G., Lauzan, E., & Kennedy, J. F. (2005). Isolation, purification and characterization of hyaluronan from human umbilical cord residues. Carbohydrate Polymers, 62, 321–326.

    Article  CAS  Google Scholar 

  82. Laurent, T. C., Laurent, U. B., & Fraser, J. R. E. (1996). The structure and function of hyaluronan: An overview. Immunology and Cell Biology, 74, a1–a7.

    Article  PubMed  CAS  Google Scholar 

  83. Lee, H., Lee, K., & Park, T. G. (2008). Hyaluronic acid− paclitaxel conjugate micelles: Synthesis, characterization, and antitumor activity. Bioconjugate Chemistry, 19, 1319–1325.

    Article  PubMed  CAS  Google Scholar 

  84. Lee, H., Mok, H., Lee, S., Oh, Y.-K., & Park, T. G. (2007). Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of Controlled Release, 119, 245–252.

    Article  PubMed  CAS  Google Scholar 

  85. Lee, S. Y., Kang, M. S., Jeong, W. Y., Han, D.-W., & Kim, K. S. (2020). Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers, 12, 940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Leighton, R., Fitzpatrick, J., Smith, H., Crandall, D., Flannery, C. R., & Conrozier, T. (2018). Systematic clinical evidence review of NASHA (Durolane hyaluronic acid) for the treatment of knee osteoarthritis. Open Access Rheumatology: Research and Reviews, 10, 43.

    Article  PubMed  CAS  Google Scholar 

  87. Leite, M. N., & Frade, M. A. C. (2021). Efficacy of 0.2% hyaluronic acid in the healing of skin abrasions in rats. Heliyon, 7, e07572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lequeux, I., Ducasse, E., Jouenne, T., & Thebault, P. (2014). Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. European Polymer Journal, 51, 182–190.

    Article  CAS  Google Scholar 

  89. Li, M., Sun, J., Zhang, W., Zhao, Y., Zhang, S., & Zhang, S. (2021). Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydrate Polymers, 251, 117103.

    Article  PubMed  CAS  Google Scholar 

  90. Li, R., Liu, H., Huang, H., Bi, W., Yan, R., Tan, X., Wen, W., Wang, C., Song, W., & Zhang, Y. (2018). Chitosan conduit combined with hyaluronic acid prevent sciatic nerve scar in a rat model of peripheral nerve crush injury. Molecular Medicine Reports, 17, 4360–4368.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Liu, J., Wang, Y., Li, Z., Ren, Y., Zhao, Y., & Zhao, G. (2018). Efficient production of high-molecular-weight hyaluronic acid with a two-stage fermentation. RSC Advances, 8, 36167–36171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Liu, L., Du, G., Chen, J., Wang, M., & Sun, J. (2008). Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus. Bioresource Technology, 99, 8532–8536.

    Article  PubMed  CAS  Google Scholar 

  93. Liu, L., Du, G., Chen, J., Wang, M., & Sun, J. (2009). Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess and Biosystems Engineering, 32, 755–763.

    Article  PubMed  CAS  Google Scholar 

  94. Liu, L., Liu, Y., Li, J., Du, G., & Chen, J. (2011). Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories, 10, 99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Liu, L., Sun, J., Xu, W., Du, G., & Chen, J. (2009). Modeling and optimization of microbial hyaluronic acid production by Streptococcus zooepidemicus using radial basis function neural network coupling quantum-behaved particle swarm optimization algorithm. Biotechnology Progress, 25, 1819–1825.

    Article  PubMed  Google Scholar 

  96. Liu, L., Wang, M., Du, G., & Chen, J. (2008). Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Letters in Applied Microbiology, 46, 383–388.

    Article  PubMed  CAS  Google Scholar 

  97. Ludwig, A., & Van Ooteghem, M. (1989). Evaluation of sodium hyaluronate as viscous vehicle for eye drops. Journal de Pharmacie de Belgique, 44, 391–397.

    PubMed  CAS  Google Scholar 

  98. Maltese, A., Borzacchiello, A., Mayol, L., Bucolo, C., Maugeri, F., Nicolais, L., & Ambrosio, L. (2006). Novel polysaccharides-based viscoelastic formulations for ophthalmic surgery: Rheological characterization. Biomaterials, 27, 5134–5142.

    Article  PubMed  CAS  Google Scholar 

  99. Malvankar-Mehta, M. S., Fu, A., Subramanian, Y., & Hutnik, C. (2020). Impact of ophthalmic viscosurgical devices in cataract surgery. Journal of Ophthalmology, 2020.

  100. Mao, Z., & Chen, R. R. (2007). Recombinant synthesis of hyaluronan by Agrobacterium sp. Biotechnology Progress, 23, 1038–1042.

    PubMed  CAS  Google Scholar 

  101. Mao, Z., Shin, H.-D., & Chen, R. (2009). A recombinant E. coli bioprocess for hyaluronan synthesis. Applied Microbiology and Biotechnology, 84, 63–69.

    Article  PubMed  CAS  Google Scholar 

  102. Marcellin, E., Chen, W. and Nielsen, L. K. (2009) Microbial hyaluronic acid biosynthesis.

  103. Moore, A., & Willoughby, D. (1995). Hyaluronan as a drug delivery system for diclofenac: A hypothesis for mode of action. International Journal of Tissue Reactions, 17, 153–156.

    PubMed  CAS  Google Scholar 

  104. Moreland, L. W. (2003). Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action. Arthritis Research and Therapy, 5, 1–14.

    Article  Google Scholar 

  105. Murado, M., Montemayor, M., Cabo, M., Vázquez, J., & González, M. (2012). Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food and Bioproducts Processing, 90, 491–498.

    Article  CAS  Google Scholar 

  106. O'Regan, M., Martini, I., Crescenzi, F., De Luca, C., & Lansing, M. (1994). Molecular mechanisms and genetics of hyaluronan biosynthesis. International Journal of Biological Macromolecules, 16, 283–286.

    Article  PubMed  CAS  Google Scholar 

  107. Oueslati, N., Leblanc, P., Bodin, A., Harscoat-Schiavo, C., Rondags, E., Meunier, S., Marc, I., & Kapel, R. (2015). A simple methodology for predicting the performances of hyaluronic acid purification by diafiltration. Journal of Membrane Science, 490, 152–159.

    Article  CAS  Google Scholar 

  108. Pan, N. C., Pereira, H. C. B., da Silva, M. D. L. C., Vasconcelos, A. F. D., & Celligoi, M. A. P. C. (2017). Improvement production of hyaluronic acid by Streptococcus zooepidemicus in sugarcane molasses. Applied Biochemistry and Biotechnology, 182, 276–293.

    Article  PubMed  CAS  Google Scholar 

  109. Pape, L. G., & Balazs, E. A. (1980). The use of sodium hyaluronate (Healon®) in human anterior segment surgey. Ophthalmology, 87, 699–705.

    Article  PubMed  CAS  Google Scholar 

  110. Pinto-Fraga, J., López-de la Rosa, A., Blázquez Arauzo, F., Urbano Rodríguez, R., & González-García, M. J. (2017). Efficacy and safety of 0.2% hyaluronic acid in the management of dry eye disease. Eye & Contact Lens: Science & Clinical Practice, 43, 57–63.

    Article  Google Scholar 

  111. Pourzardosht, N., & Rasaee, M. J. (2017). Improved yield of high molecular weight hyaluronic acid production in a stable strain of Streptococcus zooepidemicus via the elimination of the hyaluronidase-encoding gene. Molecular biotechnology, 59, 192–199.

    Article  PubMed  CAS  Google Scholar 

  112. Raia, N. R., Jia, D., Ghezzi, C. E., Muthukumar, M., & Kaplan, D. L. (2020). Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials, 233, 119729.

    Article  PubMed  CAS  Google Scholar 

  113. Rajendran, V., Puvendran, K., Guru, B. R., & Jayaraman, G. (2016). Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis. Journal of Separation Science, 39, 655–662.

    Article  PubMed  CAS  Google Scholar 

  114. Rangaswamy, V., & Jain, D. (2008). An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp. zooepidemicus. Biotechnology letters, 30, 493–496.

    Article  PubMed  CAS  Google Scholar 

  115. Raulkar, K. P. (2020). Viscosupplementation. Regenerative Medicine for Spine and Joint Pain, 29–41.

  116. Reddy, K. J., & Karunakaran, K. (2013). Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7. Journal of BioScience & Biotechnology, 2.

  117. Robert, L. (2015). Hyaluronan, a truly “youthful” polysaccharide. Its medical applications. Pathologie Biologie, 63, 32–34.

    Article  PubMed  CAS  Google Scholar 

  118. Rodriguez-Marquez, C. D., Arteaga-Marin, S., Rivas-Sánchez, A., Autrique-Hernández, R., & Castro-Muñoz, R. (2022). A review on current strategies for extraction and purification of hyaluronic acid. International Journal of Molecular Sciences, 23, 6038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Rohit, S. G., Jyoti, P. K., Subbi, R. R. T., Naresh, M., & Senthilkumar, S. (2018). Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochemical Engineering Journal, 137, 284–293.

    Article  CAS  Google Scholar 

  120. Saari, H., & Konttinen, Y. (1989). Determination of synovial fluid hyaluronate concentration and polymerisation by high performance liquid chromatography. Annals of the rheumatic diseases, 48, 565–570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Salzillo, R., Schiraldi, C., Corsuto, L., D’Agostino, A., Filosa, R., De Rosa, M., & La Gatta, A. (2016). Optimization of hyaluronan-based eye drop formulations. Carbohydrate polymers, 153, 275–283.

    Article  PubMed  CAS  Google Scholar 

  122. Schiraldi, C., Annalisa, L., & Mario, D. (2010). In M. Elnashar (Ed.), ISBN: 978-953-307-109-1 Biotechnological production and application of hyaluronan, biopolymers. InTech.

    Google Scholar 

  123. Schramm, C., Spitzer, M. S., Henke-Fahle, S., Steinmetz, G., Januschowski, K., Heiduschka, P., Geis-Gerstorfer, J., Biedermann, T., Bartz-Schmidt, K. U., & Szurman, P. (2012). The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Investigative Ophthalmology & Visual Science, 53, 613–621.

    Article  CAS  Google Scholar 

  124. Shah, M. V., Badle, S. S., & Ramachandran, K. (2013). Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochemical Engineering Journal, 80, 53–60.

    Article  CAS  Google Scholar 

  125. Shelma, R. (2022). A holistic and integrated approach to lifestyle diseases (pp. 319–332). Apple Academic Press.

    Google Scholar 

  126. Shi, L. (2016). Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International Journal of Biological Macromolecules, 92, 37–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Shiedlin, A., Bigelow, R., Christopher, W., Arbabi, S., Yang, L., Maier, R. V., Wainwright, N., Childs, A., & Miller, R. J. (2004). Evaluation of hyaluronan from different sources: Streptococcus z ooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules, 5, 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  128. Shimizu, Y., & Li, B. (2006). Natural products isolation (pp. 415–438). Springer.

    Book  Google Scholar 

  129. Size, H. A. M. (2020). Share & trends analysis report by application (dermal fillers, osteoarthritis (single injection, three injection, five injection), ophthalmic, vesicoureteral reflux), by region, and segment forecasts, 2020–2027 (p. 150). Grand View Research.

    Google Scholar 

  130. Sunguroğlu, C., Sezgin, D. E., Aytar Çelik, P., & Çabuk, A. (2018). Higher titer hyaluronic acid production in recombinant Lactococcus lactis. Preparative Biochemistry and Biotechnology, 48, 734–742.

    Article  PubMed  Google Scholar 

  131. Suppan, V. K. L., Wei, C. Y., Siong, T. C., Mei, T. M., Chern, W. B., Nanta Kumar, V. K., Sheng, K. R., & Sadashiva Rao, A. (2017). Randomized controlled trial comparing efficacy of conventional and new single larger dose of intra-articular viscosupplementation in management of knee osteoarthritis. Journal of Orthopaedic Surgery, 25, 2309499017731627.

    Article  PubMed  Google Scholar 

  132. Szabó, A., Zelkó, R., & Antal, I. (2011). Treatment of rheumatic diseases with intraarticular drug delivery systems. Acta Pharmaceutica Hungarica, 81, 77–86.

    PubMed  Google Scholar 

  133. Sze, J. H., Brownlie, J. C., & Love, C. A. (2016). Biotechnological production of hyaluronic acid: A mini review. 3 Biotech, 6, 1–9.

    Article  Google Scholar 

  134. Tammi, R. H., Kultti, A., Kosma, V.-M., Pirinen, R., Auvinen, P., & Tammi, M. I. (2008). Hyaluronan in human tumors: Pathobiological and prognostic messages from cell-associated and stromal hyaluronan. In Seminars in cancer biology (pp. 288–295). Elsevier.

    Google Scholar 

  135. Tarricone, E., Elia, R., Mattiuzzo, E., Faggian, A., Pozzuoli, A., Ruggieri, P., & Brun, P. (2021). The viability and anti-inflammatory effects of hyaluronic acid-chitlac-tracimolone acetonide-β-cyclodextrin complex on human chondrocytes. Cartilage, 13, 920S–924S.

    Article  PubMed  CAS  Google Scholar 

  136. Tezel, A., & Fredrickson, G. H. (2008). The science of hyaluronic acid dermal fillers. Journal of Cosmetic and Laser Therapy, 10, 35–42.

    Article  PubMed  Google Scholar 

  137. Thomas, R. G., Moon, M., Lee, S., & Jeong, Y. Y. (2015). Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: In vitro and in vivo analysis. International Journal of Biological Macromolecules, 72, 510–518.

    Article  PubMed  CAS  Google Scholar 

  138. Trombino, S., Servidio, C., Curcio, F., & Cassano, R. (2019). Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics, 11, 407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Ünlüer, Ö. B., Ersöz, A., Denizli, A., Demirel, R., & Say, R. (2013). Separation and purification of hyaluronic acid by embedded glucuronic acid imprinted polymers into cryogel. Journal of Chromatography B, 934, 46–52.

    Article  Google Scholar 

  140. van Eijk, T., & Braun, M. (2007). A novel method to inject hyaluronic acid: The Fern Pattern Technique. Journal of Drugs in Dermatology: JDD, 6, 805–808.

    PubMed  Google Scholar 

  141. Vandermeer, G., Chamy, Y., & Pisella, P.-J. (2018). Comparison of objective optical quality measured by double-pass aberrometry in patients with moderate dry eye: Normal saline vs. artificial tears: A pilot study. Journal Francais d'ophtalmologie, 41, e51–e57.

    Article  PubMed  CAS  Google Scholar 

  142. Vasvani, S., Kulkarni, P., & Rawtani, D. (2020). Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. International Journal of Biological Macromolecules, 151, 1012–1029.

    Article  PubMed  CAS  Google Scholar 

  143. Vázquez, J. A., Montemayor, M. I., Fraguas, J., & Murado, M. A. (2010). Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microbial Cell Factories, 9, 1–10.

    Article  Google Scholar 

  144. Wang, J., He, W., Wang, T., Li, M., & Li, X. (2021). Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus. Colloids and Surfaces B: Biointerfaces, 205, 111854.

    Article  PubMed  CAS  Google Scholar 

  145. Wang, S., Zhang, J., Wang, Y., & Chen, M. (2016). Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine: Nanotechnology. Biology and Medicine, 12, 411–420.

    CAS  Google Scholar 

  146. Wang, Y., Zhang, J., & Liu, H. (2014). Separation and purification of hyaluronic acid from fermentation broth. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012) (pp. 1523–1530). Springer.

    Chapter  Google Scholar 

  147. Wessels, M. R., Moses, A. E., Goldberg, J. B., & DiCesare, T. J. (1991). Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proceedings of the National Academy of Sciences, 88, 8317–8321.

    Article  CAS  Google Scholar 

  148. Wibowo, D., & Lee, C.-K. (2010). Nonleaching antimicrobial cotton fibers for hyaluronic acid adsorption. Biochemical Engineering Journal, 53, 44–51.

    Article  CAS  Google Scholar 

  149. Wickens, J. M., Alsaab, H. O., Kesharwani, P., Bhise, K., Amin, M. C. I. M., Tekade, R. K., Gupta, U., & Iyer, A. K. (2017). Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug discovery today, 22, 665–680.

    Article  PubMed  CAS  Google Scholar 

  150. Widner, B., Behr, R., Von Dollen, S., Tang, M., Heu, T., Sloma, A., Sternberg, D., DeAngelis, P. L., Weigel, P. H., & Brown, S. (2005). Hyaluronic acid production in Bacillus subtilis. Applied and environmental microbiology, 71, 3747–3752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Willoughby, D. A. (1994) First International Workshop on Hyaluronan in Drug Delivery: Proceedings of an Extended Panel Discussion Held in Windsor, UK on 29 September, 1992. ed. Royal Society of Medicine Services with financial support from Hyal.

  152. Witting, M., Boreham, A., Brodwolf, R., Vavrova, K., Alexiev, U., Friess, W., & Hedtrich, S. (2015). Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Molecular pharmaceutics, 12, 1391–1401.

    Article  PubMed  CAS  Google Scholar 

  153. Woo, J. E., Seong, H. J., Lee, S. Y., & Jang, Y.-S. (2019). Metabolic engineering of Escherichia coli for the production of hyaluronic acid from glucose and galactose. Frontiers in Bioengineering and Biotechnology, 7, 351.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wu, J., Deng, C., Meng, F., Zhang, J., Sun, H., & Zhong, Z. (2017). Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. Journal of Controlled Release, 259, 76–82.

    Article  PubMed  CAS  Google Scholar 

  155. Yamada, T., & Kawasaki, T. (2005). Microbial synthesis of hyaluronan and chitin: New approaches. Journal of Bioscience and Bioengineering, 99, 521–528.

    Article  PubMed  CAS  Google Scholar 

  156. Yamasaki, K., Drolle, E., Nakagawa, H., Hisamura, R., Ngo, W., & Jones, L. (2021). Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability. Contact Lens and Anterior Eye, 44, 101334.

    Article  PubMed  Google Scholar 

  157. Yang, P.-F., & Lee, C.-K. (2007). Hyaluronic acid interaction with chitosan-conjugated magnetite particles and its purification. Biochemical Engineering Journal, 33, 284–289.

    Article  CAS  Google Scholar 

  158. Yang, Q., Xie, Z., Hu, J., & Liu, Y. (2021). Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Materials Science and Engineering: C, 128, 112319.

    Article  PubMed  CAS  Google Scholar 

  159. Yao, J., Fan, Y., Du, R., Zhou, J., Lu, Y., Wang, W., Ren, J., & Sun, X. (2010). Amphoteric hyaluronic acid derivative for targeting gene delivery. Biomaterials, 31, 9357–9365.

    Article  PubMed  CAS  Google Scholar 

  160. Yao, Z.-Y., Qin, J., Gong, J.-S., Ye, Y.-H., Qian, J.-Y., Li, H., Xu, Z.-H., & Shi, J.-S. (2021). Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydrate Polymers, 264, 118015.

    Article  PubMed  CAS  Google Scholar 

  161. Yu, H., & Stephanopoulos, G. (2008). Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metabolic Engineering, 10, 24–32.

    Article  PubMed  CAS  Google Scholar 

  162. Zhang, W., Sun, Q., Hao, S., Geng, J., & Lv, C. (2016). Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 98, 1297–1304.

    Article  CAS  Google Scholar 

  163. Zhang, Z., Suner, S. S., Blake, D. A., Ayyala, R. S., & Sahiner, N. (2020). Antimicrobial activity and biocompatibility of slow-release hyaluronic acid-antibiotic conjugated particles. International Journal of Pharmaceutics, 576, 119024.

    Article  PubMed  CAS  Google Scholar 

  164. Zhou, H., Ni, J., Huang, W., & Zhang, J. (2006). Separation of hyaluronic acid from fermentation broth by tangential flow microfiltration and ultrafiltration. Separation and Purification Technology, 52, 29–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is acknowledged that the Central Instrument Facility Center (CIFC) of the Indian Institute of Technology (BHU) Varanasi has offered technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

PS designed and completed the manuscript. All authors supervised, read and approved the manuscript.

Corresponding author

Correspondence to Abha Mishra.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•In the medical, pharmaceutical, and polymer sectors, HA, a glycosaminoglycan, holds a prominent position.

•The ideal method for producing sustainable HA is microbial production.

•Due to their advantages in downstream processing, precipitation and ultrafiltration are frequent processes.

•HA production potential and the industrial-scale scenario are discussed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Sinha, R., Anand, S. et al. Tapping on the Potential of Hyaluronic Acid: from Production to Application. Appl Biochem Biotechnol 195, 7132–7157 (2023). https://doi.org/10.1007/s12010-023-04461-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04461-6

Keywords

Navigation