Skip to main content

Advertisement

Log in

Accelerated Reinforcement of Calcareous sand via Biomineralization with Aluminum Ion Flocculant

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbially induced calcium carbonate precipitation (MICP) is an immensely growing technique that utilizes the metabolic pathways of bacteria to form calcite precipitation throughout the soil matrix, leading to improve geotechnical engineering properties. However, the excessive number of treatments limited the application of MICP for strengthening calcareous sand. To reduce the number of treatments and develop efficiencies, this paper investigates the optimized treatment protocol of adding aluminum ion flocculants to the cementing solution to accelerate the curing rate of the MICP and its effect. The results show that adding a certain concentration of AlCl3 to the cementing solution can resulted in a rapid increase in strength of the calcareous sand column. When 0.02 M aluminum chloride was added to the cementing solution, the unconfined compressive strength of the sand column reached 827 kPa after three treatments, and it reached 2 MPa after five treatments, while the control group needed to be treated 10 and 15 times, respectively, to reach equivalent strengths. In this paper, the unconfined compressive strength of the sand column formed using the proposed method was 27–40 times that of the control group at the same calcium carbonate content. The presented experimental approach can be used as a tool to design the treatment protocol for the engineering application of MICP-reinforced calcareous sand in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Kang, C. H., Choi, J. H., Noh, J., Kwak, D. Y., Han, S. H., & So, J. S. (2014). Microbially induced calcite precipitation-based sequestration of strontium by sporosarcina pasteurii WJ-2. Applied Biochemistry and Biotechnology, 174, 2482–2491.

    Article  CAS  PubMed  Google Scholar 

  2. Achal, V., & Pan, X. (2014). Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp CR2. Applied Biochemistry and Biotechnology, 173, 307–317.

    Article  CAS  PubMed  Google Scholar 

  3. Mujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by Microbially Induced Calcite Precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34, 524–537.

    Article  CAS  Google Scholar 

  4. Song, C., Elsworth, D., Zhi, S., & Wang, C. (2021). The influence of particle morphology on microbially induced CaCO3 clogging in granular media. Marine Georesources & Geotechnology, 39, 74–81.

    Article  CAS  Google Scholar 

  5. Fang, X., Shen, C., Chu, J., Wu, S., & Li, Y. (2015). An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate. Rock and Soil Mechanics, 36, 2773–2779.

    Google Scholar 

  6. Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36, 112–117.

    Article  Google Scholar 

  7. Bains, A., Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2015). Influence of exopolymeric materials on bacterially induced mineralization of carbonates. Applied Biochemistry and Biotechnology, 175, 3531–3541.

    Article  CAS  PubMed  Google Scholar 

  8. Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials-a review. Applied Biochemistry and Biotechnology, 172, 2308–2323.

    Article  CAS  PubMed  Google Scholar 

  9. Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5, 250.

  10. Hammes, F., & Verstraete*, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science & Biotechnology, 1, 3–7.

  11. Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F., & Nelson, D. C. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111, 338–349.

    Article  CAS  PubMed  Google Scholar 

  12. Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138, 992–1001.

    Article  Google Scholar 

  13. Gorospe, C. M., Han, S. H., Kim, S. G., Park, J. Y., Kang, C. H., Jeong, J. H., & So, J. S. (2013). Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering, 18, 903–908.

    Article  CAS  Google Scholar 

  14. Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology & Biochemistry, 31, 1563–1571.

    Article  CAS  Google Scholar 

  15. Mitchell, A. C., & Ferris, F. G. (2005). The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence. Geochimica Et Cosmochimica Acta, 69, 4199–4210.

    Article  CAS  Google Scholar 

  16. Okwadha, G. D. O., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81, 1143–1148.

    Article  CAS  PubMed  Google Scholar 

  17. De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological Engineering, 36, 118–136.

    Article  Google Scholar 

  18. Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (2019). Field-scale modeling of microbially induced calcite precipitation. Computers & Geosciences, 23, 399–414.

    Article  Google Scholar 

  19. Li, H., Tang, C., Liu, B., Lu, C., Cheng, Q., & Shi, B. (2020). Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment. Chinese Journal of Geotechnical Engineering, 42, 1931–1939.

    Google Scholar 

  20. Zheng, J., Wu, C., Song, Y., & Cui, M. (2020). Study of the strength test and strength dispersion of MICP-treated calcareous sand. Journal of Harbin Engineering University, 41, 250–256.

    Google Scholar 

  21. Achal, V., Pan, X., & Zhang, D. (2012). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89, 764–768.

    Article  CAS  PubMed  Google Scholar 

  22. Cheshomi, A., Mansouri, S., & Amoozegar, M. A. (2018). Improving the shear strength of quartz sand using the microbial method. Geomicrobiology Journal, 35, 749–756.

    Article  CAS  Google Scholar 

  23. Martinez, A., Huang, L., & Gomez, M. G. (2019). Thermal conductivity of MICP-treated sands at varying degrees of saturation. Geotechnique Letters, 9, 15–21.

    Article  Google Scholar 

  24. Xiao, Y., Zhao, C., Sun, Y., Wang, S., Wu, H., Chen, H., & Liu, H. (2021). Compression behavior of MICP-treated sand with various gradations. Acta Geotechnica, 16, 1391–1400.

    Article  Google Scholar 

  25. Jafarian, Y., & Javdanian, H. (2020). Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database. International Journal of Civil Engineering, 18, 245–249.

    Article  Google Scholar 

  26. Liu, L., Yao, X., Ji, Z., Gao, H., Wang, Z., & Shen, Z. (2021). Cyclic behavior of calcareous sand from the South China Sea. Journal of Marine Science and Engineering, 9(9), 1014.

  27. Xinzhi, W., Ren, W., Qinshan, M., & Xiaopeng, L. I. U. (2009). Study of plate load test of calcareous sand. Rock and Soil Mechanics, 30, 147–151156.

    Google Scholar 

  28. Zhu, C., Chen, H., Meng, Q., & Wang, R. (2014). Microscopic characterization of intra-pore structures of calcareous sands. Rock and Soil Mechanics, 35, 1831–1836.

    Google Scholar 

  29. Kuang, D., Long, Z., Guo, R., & Yu, P. (2021). Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles. Marine Georesources & Geotechnology, 39, 543–553.

    Article  CAS  Google Scholar 

  30. Lv, Y., Li, X., Fan, C., & Su, Y. (2021). Effects of internal pores on the mechanical properties of marine calcareous sand particles. Acta Geotechnica, 16, 3209–3228.

    Article  Google Scholar 

  31. Coop, M. R., Sorensen, K. K., Freitas, T. B., & Georgoutsos, G. (2004). Particle breakage during shearing of a carbonate sand. Geotechnique, 54, 157–163.

    Article  Google Scholar 

  32. Xiao, Y., Liu, H., Xiao, P., & Xiang, J. (2016). Fractal crushing of carbonate sands under impact loading. Geotechnique Letters, 6, 199–204.

  33. Xu, L. J., Wang, X., Wang, R., Zhu, C., & Liu, X. (2022). Physical and mechanical properties of calcareous soils: a review. Marine Georesources & Geotechnology, 40, 751–766.

    Article  Google Scholar 

  34. DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36, 197–210.

    Article  Google Scholar 

  35. Lee, M. L., Ng, W. S., & Tanaka, Y. (2013). Stress-deformation and compressibility responses of bio-mediated residual soils. Ecological Engineering, 60, 142–149.

    Article  Google Scholar 

  36. Chu, J., Stabnikov, V., & Ivanov, V. (2012). Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiology Journal, 29, 544–549.

    Article  CAS  Google Scholar 

  37. DeJong, J. T., Fritzges, M. B., & Nusslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1381–1392.

    Article  CAS  Google Scholar 

  38. Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. Aci Materials Journal, 98, 3–9.

    CAS  Google Scholar 

  39. Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. Murdoch University.

  40. Pernitsky, D. J., & Edzwald, J. K. (2006). Selection of alum and polyaluminum coagulants: principles and applications. Journal of Water Supply Research and Technology-Aqua, 55, 121–141.

    Article  CAS  Google Scholar 

  41. Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93, 154–168.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng, S., Pang, X., Liu, H., Wang, B., & Zhao, L. (2002). Application of pseudoehmite being synthesized by aluminum sulfate in the preparation of FCC catalyst. Chemical Industry and Engineering Progress, 21, 331–333.

    CAS  Google Scholar 

  43. Ishizaka, T., Kobayashi, Y., & Kurokawa, Y. (2003). Alumina coating on quartz glass and nickel substrates using aqueous sol derived from AlCl3 center dot 6H(2)o. Journal Materials Science, 38, 1239–1242.

    Article  CAS  Google Scholar 

  44. Choi, S. G., Park, S. S., Wu, S., & Chu, J. (2017). Methods for calcium carbonate content measurement of biocemented soils. Journal of Materials in Civil Engineering, 29(11), 6017015.

  45. Cheng, L., Shahin, M. A., & Chu, J. (2018). Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 14, 615–626.

    Article  Google Scholar 

  46. Duan, Y., Xu, G., Yang, D., & Yan, Y. (2019). Influencing factors of calcium ion utilization in MICP mineralized products and analysis of microscopic image. Chemical Industry and Engineering Progress, 38, 2306–2313.

    Google Scholar 

  47. Yin, L., Tang, C., Xie, Y., Lu, C., Jiang, N., & Shi, B. (2019). Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation. Rock and Soil Mechanics, 40, 2525–2546.

    Google Scholar 

  48. Duan, J. M., & Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100, 475–502.

    Article  Google Scholar 

  49. Kawasaki, N., Ogata, F., & Tominaga, H. (2010). Selective adsorption behavior of phosphate onto aluminum hydroxide gel. Journal of Hazardous Materials, 181, 574–579.

    Article  CAS  PubMed  Google Scholar 

  50. Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of as(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178–184.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (51578214) & Transformation Program of Scientific and Technological Achievements of Jiangsu Province, China (2021QD07). The authors are very grateful for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

Renjie Wei: Methodology, Investigation, Data curation, Writing original draft, Review and Editing. Jie Peng: Conceptualization, Methodology, Supervision, Project administration and Funding acquisition. Liangliang Li: Data curation and Experiment assistant. Zhao Jiang: Experiment assistant. Jiahui Tang: Experiment assistant.

Corresponding author

Correspondence to Jie Peng.

Ethics declarations

Ethical Approval

There is no involvement of any type of Human Participation and/or Animals in this research. This is not clinical type of research informed consent was not required.

Consent to Participate

All authors have seen the manuscript and approved to submit to Applied Biochemistry and Biotechnology.

Consent to Publish

All authors have seen the manuscript and approved to publish in Applied Biochemistry and Biotechnology.

Competing Interests

The authors declare that they no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Peng, J., Li, L. et al. Accelerated Reinforcement of Calcareous sand via Biomineralization with Aluminum Ion Flocculant. Appl Biochem Biotechnol 195, 7197–7213 (2023). https://doi.org/10.1007/s12010-023-04429-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04429-6

Keywords

Navigation