Skip to main content
Log in

Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We examined the effectiveness of using different calcium salts for bioconsolidation. Four calcium salts were chosen based on their applicability and solubility. Initial experiments demonstrated that the addition of any calcium salt had a negative effect on the urease activity of S. pasteurii. Microscopic examinations elucidated the morphological and structural differences of the calcium carbonate (CaCO3) crystals induced. Calcite and vaterite are the prominent forms of CaCO3 detected according to X-ray diffraction (XRD) analysis. Bioconsolidated sand samples were able to significantly resist water flow through a column compared to the non-treated samples. Also, in a tightness test, the differences in the ability to retain water within columns were observed among the samples tested. Moreover, despite the differences, the calcium salts tested still bound the sand together to form blocks. Our results further explain the influence of multiple factors in crystal formation and sand bioconsolidation effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson (2010) Bio-mediated soil improvement. Ecol. Eng. 36: 197–210.

    Article  Google Scholar 

  2. Whiffin, V. S., L. A. van Paassen, and M. P. Harkes (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24: 417–423.

    Article  CAS  Google Scholar 

  3. Boquet, E., A. Boronat, and A. Ramos Cormenzana (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527–529.

    Article  Google Scholar 

  4. Rivadeneyra, M. A., R. Delgado, A. Del Moral, M.R. Ferrer, and A. Ramos-Cormenzana (1993) Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol. 13: 197–204.

    Article  Google Scholar 

  5. Kroll, R. G. (1990) Alkaliphiles. pp. 55–92. In: Edwards, C. (ed.). Microbiology of extreme environments. McGraw-Hill, NY, USA.

    Google Scholar 

  6. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang (1999) Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31: 1563–1571.

    Article  CAS  Google Scholar 

  7. Hammes, F. and W. Verstraete (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 1: 3–7.

    Article  CAS  Google Scholar 

  8. De Muynck, W., K. Verbeken, N. De Belie, and W. Verstraete (2010) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol. Eng. 36: 99–111.

    Article  Google Scholar 

  9. Natarajan, K. R. (1995) Kinetic study of the enzyme urease from Dolichos biflorus. J. Chem. Educ. 73: 556–557.

    Article  Google Scholar 

  10. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  11. Hammes, F., N. Boon, J. De Villiers, W. Verstraete, and S. D. Siciliano (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901–4909.

    Article  CAS  Google Scholar 

  12. Mahadevan, S., R. D. Sauer, and J. D. Erfle (1977) Purification and properties of urease from bovine rumen. Biochem. J. 163: 495–501.

    CAS  Google Scholar 

  13. Perez-Perez, G. I., C. B. Gower, and M. J. Blaser (1994) Effects of cations on Helicobacter pylori urease activity, release, and stability. Infect. Immun. 62: 299–302.

    CAS  Google Scholar 

  14. Kistiakowsky, G. B., P. C. Mangelsdori, A. J. Rosenberg, and W. H. R. Shaw (1952) The effects of electrolytes on urease activity. J. Am. Chem. Soc. 74: 5015–5020.

    Article  CAS  Google Scholar 

  15. De Yoreo, J. J. and P. G. Vekilov (2003) Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54: 57–93.

    Article  Google Scholar 

  16. Tai, C. Y. and F. Chen (1998) Polymorphism of CaCO3 precipitated in a constant-composition environment. AIChE J. 44: 1790–1798.

    Article  CAS  Google Scholar 

  17. Park, S., Y. Park, W. Chun, W. Kim, and S. Ghim (2010) Calciteforming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782–788.

    CAS  Google Scholar 

  18. De Muynck, W., K. Cox, N. D. Belie, and W. Verstraete (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22: 875–885.

    Article  Google Scholar 

  19. Cullity, B. D. (1978) Elements of X-Ray Diffraction. 2nd ed., Addison Wesley Publishing Compnay, MA, USA.

    Google Scholar 

  20. Shirakawa, M. A., K. K. Kaminishikawahara, V. M. John, H. Kahn, and M. M. Futai (2011) Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Mater. Lett. 65: 1730–1733.

    Article  CAS  Google Scholar 

  21. Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981–988.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong So.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorospe, C.M., Han, SH., Kim, SG. et al. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnol Bioproc E 18, 903–908 (2013). https://doi.org/10.1007/s12257-013-0030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0030-0

Keywords

Navigation