Skip to main content
Log in

Structural and Functional Characterization of Exopolysaccharide Produced by a Novel Isolate Bacillus sp. EPS003

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An exopolysaccharide (EPS)-producing soil bacterium was isolated and characterized using 16S rRNA as Bacillus sp. EPS003. EPS was precipitated using ethanol and % composition of total carbohydrate, and protein was determined. Monosaccharide composition was identified using thin layer chromatography (TLC), and it was found to be a levan. Fourier transform infrared (FTIR) spectrum revealed the peaks for carboxyl, hydroxyl, and amide functional groups. 1H nuclear magnetic resonance (NMR) spectrum further confirmed the presence of fructose monomer. Field emission scanning electron microscopic images (FE-SEM) revealed porous and amorphous characteristics of EPS which was further confirmed with broad peaks in X-ray diffraction (XRD) spectrum. Elemental composition was determined using energy-dispersive X-ray analysis (EDAX). Thermogravimetric analysis (TGA) of EPS resulted in a residual mass of 33.81% at 548 °C indicating high thermal stability. In addition, solubility index and water-holding capacity of EPS were found to be 56% and 264%, respectively, making EPS suitable for various applications. Further, antioxidant potential of EPS was studied using hydroxyl and DPPH radical scavenging assays. In vitro cytotoxicity assessment using L929 cells and SK-MEL-3 cell lines clearly indicated that the EPS produced by the novel isolate Bacillus sp. EPS003 could serve as a potential anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Kumar, A., Mody, K., & Jha, B. (2007). Bacterial exopolysaccharides—a perception. Journal of basic microbiology, 47, 103–117. https://doi.org/10.1002/jobm.200610203

    Article  CAS  PubMed  Google Scholar 

  2. Florentin, D., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Microbial exopolysaccharides Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers-CARBOHYD POLYM, 87(2), 951–962.

    Article  Google Scholar 

  3. Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: Functionality and prospects. International journal of molecular sciences, 13(11), 14002–14015. https://doi.org/10.3390/ijms131114002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375–384. https://doi.org/10.1016/j.tifs.2021.02.014

    Article  CAS  Google Scholar 

  5. Suryawanshi, N., Naik, S., & Jujjawarapu, S. (2022). Exopolysaccharides and their Applications in Food Processing Industries. Food Science and Applied Biotechnology, 5, 22. https://doi.org/10.30721/fsab2022.v5.i1.165

    Article  Google Scholar 

  6. Zannini, E., Waters, D. M., Coffey, A., & Arendt, E. K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied microbiology and biotechnology, 100(3), 1121–1135. https://doi.org/10.1007/s00253-015-7172-2

    Article  CAS  PubMed  Google Scholar 

  7. Arun, J., Selvakumar, S., Sathishkumar, R., Moovendhan, M., Ananthan, G., Maruthiah, T., & Palavesam, A. (2017). In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydrate polymers, 155, 400–406. https://doi.org/10.1016/j.carbpol.2016.08.085

    Article  CAS  PubMed  Google Scholar 

  8. Yousef, R. H., Baothman, O. A. S., Abdulaal, W. H., Abo-Golayel, M. K., Darwish, A. A., Moselhy, S. S., & Hakeem, K. R. (2020). Potential antitumor activity of exopolysaccharide produced from date seed powder as a carbon source for Bacillus subtilis. Journal of Microbiological Methods, 170, 105853. https://doi.org/10.1016/j.mimet.2020.105853

    Article  CAS  PubMed  Google Scholar 

  9. Xiu, L., Zhang, H., Hu, Z., Liang, Y., Guo, S., Yang, M., & Wang, X. (2018). Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo. Food and Agricultural Immunology, 29(1), 1086–1105. https://doi.org/10.1080/09540105.2018.1513994

    Article  CAS  Google Scholar 

  10. Sasikala, D., Jeyakanthan, J., & Srinivasan, P. (2017). Structure-based virtual screening and biological evaluation of LuxT inhibitors for targeting quorum sensing through an in vitro biofilm formation. Journal of Molecular Structure, 1127, 322–336. https://doi.org/10.1016/j.molstruc.2016.07.118

    Article  CAS  Google Scholar 

  11. Biliavska, L., Pankivska, Y., Povnitsa, O., & Zagorodnya, S. (2019). Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human Adenovirus type 5. Medicina (Kaunas, Lithuania), 55(9), 519. https://doi.org/10.3390/medicina55090519

  12. Moscovici, M. (2015). Present and future medical applications of microbial exopolysaccharides. Frontiers in Microbiology, 6, 1012. https://doi.org/10.3389/fmicb.2015.01012. eCollection 2015

  13. Li, C., Chen, D., Ding, J., & Shi, Z. (2020). A novel hetero-exopolysaccharide for the adsorption of methylene blue from aqueous solutions: Isotherm, kinetic, and mechanism studies. Journal of Cleaner Production, 265, 121800. https://doi.org/10.1016/j.jclepro.2020.121800

    Article  CAS  Google Scholar 

  14. Ventorino, V., Nicolaus, B., Di Donato, P., Pagliano, G., Poli, A., Robertiello, A., & Pepe, O. (2019). Bioprospecting of exopolysaccharide-producing bacteria from different natural ecosystems for biopolymer synthesis from vinasse. Chemical and Biological Technologies in Agriculture, 6(1), 18. https://doi.org/10.1186/s40538-019-0154-3

    Article  CAS  Google Scholar 

  15. Marvasi, M., Visscher, P. T., & Casillas Martinez, L. (2010). Exopolymeric substances (EPS) from Bacillus subtilis : Polymers and genes encoding their synthesis. FEMS Microbiology Letters, 313(1), 1–9. https://doi.org/10.1111/j.1574-6968.2010.02085.x

    Article  CAS  PubMed  Google Scholar 

  16. Dertli, E., Colquhoun, I. J., Côté, G. L., Le Gall, G., & Narbad, A. (2018). Structural analysis of the α-d-glucan produced by the sourdough isolate Lactobacillus brevis E25. Food chemistry, 242, 45–52. https://doi.org/10.1016/j.foodchem.2017.09.017

    Article  CAS  PubMed  Google Scholar 

  17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  18. Palaniyandi, S., Damodharan, K., Suh, J.-W., & Yang, S. H. (2018). Functional Characterization of an Exopolysaccharide Produced by Bacillus sonorensis MJM60135 Isolated from Ganjang. Journal of microbiology and biotechnology, 28(5), 663–670. https://doi.org/10.4014/jmb.1711.11040

    Article  CAS  PubMed  Google Scholar 

  19. Rajoka, M. S. R., Mehwish, H. M., Hayat, H. F., Hussain, N., Sarwar, S., Aslam, H., & Shi, J. (2019). Characterization, the Antioxidant and Antimicrobial Activity of Exopolysaccharide Isolated from Poultry Origin Lactobacilli. Probiotics and antimicrobial proteins, 11(4), 1132–1142. https://doi.org/10.1007/s12602-018-9494-8

    Article  CAS  PubMed  Google Scholar 

  20. Irshad, M., Zafaryab, M., Singh, M., & Rizvi, M. M. A. (2012). Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. International journal of medicinal chemistry, 2012, 157125. https://doi.org/10.1155/2012/157125

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sathishkumar, R., Kannan, R., Jinendiran, S., Sivakumar, N., Selvakumar, G., & Shyamkumar, R. (2021). Production and characterization of exopolysaccharide from the sponge-associated Bacillus subtilis MKU SERB2 and its in-vitro biological properties. International journal of biological macromolecules, 166, 1471–1479. https://doi.org/10.1016/j.ijbiomac.2020.11.026

    Article  CAS  PubMed  Google Scholar 

  22. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  23. Hereher, F., ElFallal, A., Abou-Dobara, M., Toson, E., & Abdelaziz, M. M. (2018). Cultural optimization of a new exopolysaccharide producer “Micrococcus roseus.” Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 632–639. https://doi.org/10.1016/j.bjbas.2018.07.007

    Article  Google Scholar 

  24. Öner, E. T., Hernández, L., & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnology advances, 34(5), 827–844. https://doi.org/10.1016/j.biotechadv.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  25. Chidambaram, J. S. C. A., Veerapandian, B., Sarwareddy, K. K., Mani, K. P., Shanmugam, S. R., & Venkatachalam, P. (2019). Studies on solvent precipitation of levan synthesized using Bacillus subtilis MTCC 441. Heliyon, 5(9), e02414. https://doi.org/10.1016/j.heliyon.2019.e02414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elnahas, M. O., Amin, M. A., Hussein, M. M. D., Shanbhag, V. C., Ali, A. E., & Wall, J. D. (2017). Isolation, Characterization and Bioactivities of an Extracellular Polysaccharide Produced from Streptomyces sp. MOE6. Molecules., 22(9), 1396. https://doi.org/10.3390/molecules22091396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomulescu, C., Stoica, R., Sevcenco, C., Casarica, A., Moscovici, M., & Vamanu, A. (2016). LEVAN -A MINI REVIEW. Scientific Bulletin, XX, 2016, 309–317.

    Google Scholar 

  28. Lim, J. M., Joo, J. H., Kim, H. O., Kim, H. M., Kim, S. W., Hwang, H. J., & Yun, J. W. (2005). Structural analysis and molecular characterization of exopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1. Carbohydrate Polymers, 61(3), 296–303. https://doi.org/10.1016/j.carbpol.2005.04.004

    Article  CAS  Google Scholar 

  29. Van Dyk, J., Kee, N., Frost, C., & Pletschke, B. (2012). Extracellular polysaccharide production in Bacillus licheniformis SVD1 and its immunomodulatory effect. BioResources, 7, 4976–4993.

    Google Scholar 

  30. Wang, J., Zhao, X., Tian, Z., Yang, Y., & Yang, Z. (2015). Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydrate polymers, 125, 16–25. https://doi.org/10.1016/j.carbpol.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  31. Govarthanan, M., Kamala-Kannan, S., Selvankumar, T., Mythili, R., Srinivasan, P., & Kim, H. (2019). Effect of blue light on growth and exopolysaccharides production in phototrophic Rhodobacter sp. BT18 isolated from brackish water. International Journal of Biological Macromolecules, 131, 74–80. https://doi.org/10.1016/j.ijbiomac.2019.03.049

    Article  CAS  PubMed  Google Scholar 

  32. Sathiyanarayanan, G., Vignesh, V., Saibaba, G., Vinothkanna, A., Dineshkumar, K., Viswanathan, M. B., & Selvin, J. (2014). Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: A novel and greener approach. RSC Advances, 4(43), 22817–22827. https://doi.org/10.1039/C4RA01428F

    Article  CAS  Google Scholar 

  33. Liu, C., Lu, J., Lu, L., Liu, Y., Wang, F., & Xiao, M. (2010). Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8–37-0-1. Bioresource technology, 101(14), 5528–5533. https://doi.org/10.1016/j.biortech.2010.01.151

    Article  CAS  PubMed  Google Scholar 

  34. Angeli, R., da Paz, N. V. N., Maciel, J. C., Araújo, F. F. B., Paiva, P. M. G., Calazans, G. M. T., dos Correia, M. T., & S. (2009). Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin. Journal of Biomedicine and Biotechnology, 2009, 179. https://doi.org/10.1155/2009/179106

    Article  CAS  Google Scholar 

  35. Han, J., Xu, X., Gao, C., Liu, Z., & Wu, Z. (2015). Levan-Producing Leuconostoc citreum Strain BD1707 and Its Growth in Tomato Juice Supplemented with Sucrose. Applied and environmental microbiology, 82(5), 1383–1390. https://doi.org/10.1128/AEM.02944-15

    Article  CAS  PubMed  Google Scholar 

  36. Rani, R. P., Anandharaj, M., & David Ravindran, A. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules, 109, 772–783. https://doi.org/10.1016/j.ijbiomac.2017.11.062

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J., Cao, Y., Wang, J., Guo, X., Zheng, Y., Zhao, W., Mei, X., Guo, T., Yang, Z. (2016). Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydrate Polymers, 146, 368–375. https://doi.org/10.1016/j.carbpol.2016.03.063

  38. Sirin, S., & Aslim, B. (2020). Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta1–42-induced apoptosis in SH-SY5Y cells. Scientific Reports, 10, 8124. https://doi.org/10.1038/s41598-020-65147-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tilwani, Y. M., Lakra, A. K., Domdi, L., Yadav, S., Jha, N., & Arul, V. (2021). Optimization and physicochemical characterization of low molecular levan from Enterococcus faecium MC-5 having potential biological activities. Process Biochemistry, 110, 282–291. https://doi.org/10.1016/j.procbio.2021.08.021

    Article  CAS  Google Scholar 

  40. Chowdhury, S. R., Manna, S., Saha, P., Basak, R. K., Sen, R., Roy, D., & Adhikari, B. (2011). Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: A hydrodynamic sediment-attached isolate of freshwater origin. Journal of applied microbiology, 111(6), 1381–1393. https://doi.org/10.1111/j.1365-2672.2011.05162.x

    Article  CAS  PubMed  Google Scholar 

  41. Andrew, M., & Jayaraman, G. (2022). Molecular Characterization and Biocompatibility of Exopolysaccharide Produced by Moderately Halophilic Bacterium Virgibacillus dokdonensis from the Saltern of Kumta Coast. Polymers, 14(19), 3986. https://doi.org/10.3390/polym14193986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Yang, Z., Li, S. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. International Journal of Biological Macromolecules, 54, 270–275. https://doi.org/10.1016/j.ijbiomac.2012.12.037

  43. Sasikumar, K., Kozhummal Vaikkath, D., Devendra, L., & Nampoothiri, K. M. (2017). An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresource technology, 241, 1152–1156. https://doi.org/10.1016/j.biortech.2017.05.075

    Article  CAS  PubMed  Google Scholar 

  44. Banerjee, A., Rudra, S. G., Mazumder, K., Nigam, V., & Bandopadhyay, R. (2018). Structural and Functional Properties of Exopolysaccharide Excreted by a Novel Bacillus anthracis (Strain PFAB2) of Hot Spring Origin. Indian Journal of Microbiology, 58(1), 39–50. https://doi.org/10.1007/s12088-017-0699-4

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, L., Zhao, B., Liu, C.-J., & Yang, E. (2020). Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum SP8 and the Exopolysaccharides Antioxidant Activity Test. Indian journal of microbiology, 60(3), 334–345. https://doi.org/10.1007/s12088-020-00865-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International journal of biological macromolecules, 162, 853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, X., Hong, T., Yu, Q., Nie, S., Gong, D., Xiong, T., & Xie, M. (2017). Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Scientific Reports, 7(1), 14247. https://doi.org/10.1038/s41598-017-14178-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Sivasankari Marimuthu and Karthikeyan Rajendran. The first draft of the manuscript was written by Sivasankari Marimuthu and all authors commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Karthikeyan Rajendran.

Ethics declarations

Ethics Approval

The study did not involve any animal or human subjects.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Isolation and characterization of novel Exopolysaccharide (EPS)-producing Bacillus sp. EPS003 using 16S rRNA sequence.

• Extraction, partial purification, and chemical composition of EPS.

• Structural characterization of EPS using FTIR, NMR, FESEM, XRD, and functional characterization using in vitro antioxidant and anticancer assays.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marimuthu, S., Rajendran, K. Structural and Functional Characterization of Exopolysaccharide Produced by a Novel Isolate Bacillus sp. EPS003. Appl Biochem Biotechnol 195, 4583–4601 (2023). https://doi.org/10.1007/s12010-023-04368-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04368-2

Keywords

Navigation