Skip to main content

Advertisement

Log in

A Review on Psychrophilic β-D-Galactosidases and Their Potential Applications

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The majority of the Earth’s ecosystem is frigid and frozen, which permits a vast range of microbial life forms to thrive by triggering physiological responses that allow them to survive in cold and frozen settings. The apparent biotechnology value of these cold-adapted enzymes has been targeted. Enzymes’ market size was around USD 6.3 billion in 2017 and will witness growth at around 6.8% CAGR up to 2024 owing to shifting consumer preferences towards packaged and processed foods due to the rising awareness pertaining to food safety and security reported by Global Market Insights (Report ID-GMI 743). Various firms are looking for innovative psychrophilic enzymes in order to construct more effective biochemical pathways with shorter reaction times, use less energy, and are ecologically acceptable. D-Galactosidase catalyzes the hydrolysis of the glycosidic oxygen link between the terminal non-reducing D-galactoside unit and the glycoside molecule. At refrigerated temperature, the stable structure of psychrophile enzymes adjusts for the reduced kinetic energy. It may be beneficial in a wide variety of activities such as pasteurization of food, conversion of biomass, biological role of biomolecules, ambient biosensors, and phytoremediation. Recently, psychrophile enzymes are also used in claning the contact lens. β-D-Galactosidases have been identified and extracted from yeasts, fungi, bacteria, and plants. Conventional (hydrolyzing activity) and nonconventional (non-hydrolytic activity) applications are available for these enzymes due to its transgalactosylation activity which produce high value-added oligosaccharides. This review content will offer new perspectives on cold-active β-galactosidases, their source, structure, stability, and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Collins, T., & Margesin, R. (2019). Psychrophilic lifestyles: Mechanisms of adaptation and biotechnological tools. Applied Microbiology and Biotechnology, 103(7), 2857–2871. https://doi.org/10.1007/s00253-019-09659-5

    Article  CAS  PubMed  Google Scholar 

  2. Bhatia, R. K., Ullah, S., Hoque, M. Z., Ahmad, I., Yang, Y., Bhatt, A. K., & Bhatia, S. K. (2021). Psychrophiles: A source of cold-adapted enzymes for energy efficient biotechnological industrial processes. Journal of Environmental Chemical Engineering, 9(1), 104607. https://doi.org/10.1016/j.jece.2020.104607

    Article  CAS  Google Scholar 

  3. Tribelli, P., & López, N. (2018). Reporting key features in cold-adapted bacteria. Life, 8(1), 8. https://doi.org/10.3390/life8010008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cavicchioli, R., et al. (2011). Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology, 4, 449–460. https://doi.org/10.1111/j.1751-7915.2011.00258.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Furhan, J. (2020). Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: Recent overview. Journal of Genetic Engineering and Biotechnology, 18(1), https://doi.org/10.1186/s43141-020-00053-7

  6. Liu, Q. et al. (2019) “Microevolution and adaptive strategy of psychrophilic species Flavobacterium bomense sp. nov. isolated from glaciers.” Frontiers in Microbiology, 10, https://doi.org/10.3389/fmicb.2019.01069

  7. Jin, M., Gai, Y., Guo, X., Hou, Y., & Zeng, R. (2019). Properties and aapplications of extremozymes from deep-sea extremophilic microorganisms: A mini review. Marine Drugs, 17(12), 656. https://doi.org/10.3390/md17120656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feller, G., & Gerday, C. (2003). Psychrophilic enzymes: Hot topics in cold adaptation. Nature Reviews Microbiology, 1(3), 200–208. https://doi.org/10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  9. Kavitha, M. (2016). Cold active lipases – An update. Frontiers in Life Science, 9(3), 226–238. https://doi.org/10.1080/21553769.2016.1209134

    Article  CAS  Google Scholar 

  10. Wang, L., Mou, Y., Guan, B., Hu, Y., Zhang, Y., Zeng, J., & Ni, Y. (2020). Genome sequence of the psychrophilic Cryobacterium sp. LW097 and characterization of its four novel cold-adapted β-galactosidases. International Journal of Biological Macromolecules, 163, 2068–2083. https://doi.org/10.1016/j.ijbiomac.2020.09.100

    Article  CAS  PubMed  Google Scholar 

  11. Santiago, M., Ramírez-Sarmiento, C. A., Zamora, R. A., & Parra, L. P. (2016). Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Frontiers in Microbiology, 7, 1408. https://doi.org/10.3389/fmicb.2016.01408

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mangiagalli, M., & Lotti, M. (2021). Cold-active β-galactosidases: Insight into cold adaptation mechanisms and biotechnological exploitation. Marine Drugs, 19(1), 43. https://doi.org/10.3390/md19010043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakagawa, T., Fujimoto, Y., Ikehata, R., Miyaji, T., & Tomizuka, N. (2006). Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Applied Microbiology and Biotechnology, 72(4), 720–725. https://doi.org/10.1007/s00253-006-0339-0

    Article  CAS  PubMed  Google Scholar 

  14. Sočan, J., Kazemi, M., Isaksen, G. V., Brandsdal, B. O., & Åqvist, J. (2018). Catalytic adaptation of psychrophilic elastase. Biochemistry, 57(20), 2984–2993. https://doi.org/10.1021/acs.biochem.8b00078

    Article  CAS  PubMed  Google Scholar 

  15. Hamdan, A (2018). Psychrophiles: Ecological significance and potential industrial application. South African Journal of Science, 114(5/6),https://doi.org/10.17159/sajs.2018/20170254

  16. Bruno, S., Coppola, D., Prisco, G. D., Giordano, D., & Verde, C. (2019). Enzymes from marine polar regions and their biotechnological applications. Marine Drugs, 17(10), 544. https://doi.org/10.3390/md17100544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Birolli, W. G., Lima, R. N., & Porto, A. L. (2019). Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Frontiers in Microbiology,10. https://doi.org/10.3389/fmicb.2019.01453

  18. Casillo, A., Ziaco, M., Lindner, B., Parrilli, E., Schwudke, D., Holgado, A., & Corsaro, M. M. (2017). Unusual lipid A from a cold-adapted bacterium: Detailed structural characterization. ChemBioChem, 18(18), 1845–1854. https://doi.org/10.1002/cbic.201700287

    Article  CAS  PubMed  Google Scholar 

  19. Benforte, F. C., Colonnella, M. A., Ricardi, M. M., Venero, E. C., Lizarraga, L., López, N. I., & Tribelli, P. M. (2018). Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. Plos One, 13(2). https://doi.org/10.1371/journal.pone.0192559

  20. Santiago, M., Ramírez-Sarmiento, C. A., Zamora, R. A., & Parra, L. P. (2016). Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Frontiers in Microbiology, 7, 1408. https://doi.org/10.3389/fmicb.2016.01408

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou, Y., Chen, X., Li, X., Han, Y., Wang, Y., Yao, R., & Li, S. (2019). Purification and characterization of a new cold-adapted and thermo-tolerant chitosanase from marine bacterium Pseudoalteromonas sp. SY39. Molecules, 24(1), 183. https://doi.org/10.3390/molecules24010183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei, W., Ma, J., Chen, S., Cai, X., & Wei, D. (2015). A novel cold-adapted type I pullulanase of Paenibacillus polymyxa Nws-pp2: In vivo functional expression and biochemical characterization of glucans hydrolyzates analysis. BMC Biotechnology,15(1). https://doi.org/10.1186/s12896-015-0215-z

  23. Cai, Z., Ge, H., Yi, Z., Zeng, R., & Zhang, G. (2018). Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. International Journal of Biological Macromolecules, 118, 2176–2184. https://doi.org/10.1016/j.ijbiomac.2018.07.090

    Article  CAS  PubMed  Google Scholar 

  24. Mao, Y., Yin, Y., Zhang, L., Alias, S. A., Gao, B., & Wei, D. (2015). Development of a novel Aspergillus uracil deficient expression system and its application in expressing a cold-adapted α-amylase gene from Antarctic fungi Geomyces pannorum. Process Biochemistry, 50(10), 1581–1590. https://doi.org/10.1016/j.procbio.2015.06.016

    Article  CAS  Google Scholar 

  25. Onaizi, S. A. (2018). Enzymatic removal of protein fouling from self-assembled cellulosic nanofilms: Experimental and modeling studies. European Biophysics Journal, 47(8), 951–960. https://doi.org/10.1007/s00249-018-1320-4

    Article  CAS  PubMed  Google Scholar 

  26. Ojha, B., Singh, P. K., & Shrivastava, N. (2019). Enzymes in the animal feed industry. Enzymes in Food Biotechnology, 93-109. https://doi.org/10.1016/b978-0-12-813280-7.00007-4

  27. Anastasiou, E., Lorentz, K. O., Stein, G. J., & Mitchell, P. D. (2014). Prehistoric schistosomiasis parasite found in the Middle East. The Lancet Infectious Diseases, 14(7), 553–554. https://doi.org/10.1016/s1473-3099(14)70794-7

    Article  PubMed  Google Scholar 

  28. Yasui, K., & Baba, A. (2006). Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflammation Research, 55(9), 359–363. https://doi.org/10.1007/s00011-006-5195-y

    Article  CAS  PubMed  Google Scholar 

  29. Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology & Biotechnology, 81(4), 530–543. https://doi.org/10.1002/jctb.1453

    Article  CAS  Google Scholar 

  30. Muñoz, P. A. et al. (2017). Structure and application of antifreeze proteins from Antarctic bacteria. Microbial Cell Factories, 16(1), https://doi.org/10.1186/s12934-017-0737-2

  31. Dolev, M. B., et al. (2016). Putting life on ice: Bacteria that bind to frozen water. Journal of The Royal Society Interface, 13(121), 20160210. https://doi.org/10.1098/rsif.2016.0210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sindhu, R., Binod, P., Madhavan, A., Beevi, U. S., Mathew, A. K., Abraham, A., & Kumar, V. (2017). Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresource Technology, 245, 1740–1748. https://doi.org/10.1016/j.biortech.2017.04.098

    Article  CAS  PubMed  Google Scholar 

  33. Kobus, S., Widderich, N., Hoeppner, A., Bremer, E., & Smits, S. H. (2015). Overproduction, crystallization and X-ray diffraction data analysis of ectoine synthase from the cold-adapted marine bacteriumSphingopyxis alaskensis. Acta Crystallographica Section F Structural Biology Communications, 71(8), 1027–1032. https://doi.org/10.1107/s2053230x15011115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Gobba, C., et al. (2014). Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense. Food Chemistry, 165, 205–215. https://doi.org/10.1016/j.foodchem.2014.05.082

    Article  CAS  PubMed  Google Scholar 

  35. Yuan, Q. et al. (2009) Purification and characterization of cold-adapted metalloprotease from deep sea water lactic acid bacteria Enterococcus faecalis TN-9. International Journal of Biology, 1(2), https://doi.org/10.5539/ijb.v1n2p12

  36. Sarmiento, F. et al. (2015). Cold and hot extremozymes: Industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology, 3, https://doi.org/10.3389/fbioe.2015.00148

  37. Sun, J., Yao, C., Wang, W., Zhuang, Z., Liu, J., Dai, F., & Hao, J. (2018). Cloning, expression and characterization of a novel cold-adapted β-galactosidase from the deep-sea bacterium Alteromonas sp. ML52. Marine Drugs, 16(12), 469. https://doi.org/10.3390/md16120469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, L., Guo, L., Wang, K., Liu, Y., & Xiao, M. (2020). β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnology Advances, 39, 107465. https://doi.org/10.1016/j.biotechadv.2019.107465

    Article  CAS  PubMed  Google Scholar 

  39. Juers, D. H., Matthews, B. W., & Huber, R. E. (2012). LacZβ-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Science, 21(12), 1792–1807. https://doi.org/10.1002/pro.2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xavier, J. R., Ramana, K. V., & Sharma, R. K. (2018). β-Galactosidase: Biotechnological applications in food processing. Journal of Food Biochemistry, 42(5). https://doi.org/10.1111/jfbc.12564

  41. Oliveira, C., Guimarães, P. M., & Domingues, L. (2011). Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnology Advances, 29(6), 600–609. https://doi.org/10.1016/j.biotechadv.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  42. Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech,7(1). https://doi.org/10.1007/s13205-017-0645-5

  43. Hoyoux, A., Jennes, I., Dubois, P., Genicot, S., Dubail, F., Francois, J. M., & Gerday, C. (2001). Cold-adapted -galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Applied and Environmental Microbiology, 67(4), 1529–1535. https://doi.org/10.1128/aem.67.4.1529-1535.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Husain, Q. (2010). β Galactosidases and their potential applications: A review. Critical Reviews in Biotechnology, 30(1), 41–62. https://doi.org/10.3109/07388550903330497

    Article  CAS  PubMed  Google Scholar 

  45. Bruno, S., Coppola, D., Diprisco, G., Giordano, D., & Verde, C. (2019). Enzymes from marine polar regions and their biotechnological applications. Marine Drugs, 17, 544. https://doi.org/10.3390/md17100544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pal, A., Pal, V., Ramana, K. V., & Bawa, A. S. (2009). Biochemical studies of β-galactosidase from Kluyveromyces lactis. Journal of Food Science and Technology, 46(3), 217–220.

    CAS  Google Scholar 

  47. Singh, L., & Ramana, K. V. (1998) Isolation and characterization of psychrotrophic Antarctic from blue green algal mass and their hydrolytic enzymes. Scientific report. 14th Indian Expedition to Antarctica (DOD, New Delhi) Technical Publication No. 12, pp. 199–206.

  48. Dekker, P., Koenders, D., & Bruins, M. (2019). Lactose-free dairy products: Market developments, production, nutrition and health benefits. Nutrients, 11(3), 551. https://doi.org/10.3390/nu11030551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, G., Gao, Y., Hu, B., Lu, X., Liu, X., & Jiao, B. (2013). A novel cold-adapted β-galactosidase isolated from Halomonas sp. S62: Gene cloning, purification and enzymatic characterization. World Journal of Microbiology and Biotechnology, 29(8), 1473–1480. https://doi.org/10.1007/s11274-013-1311-7

    Article  CAS  PubMed  Google Scholar 

  50. Horner, T., Dunn, M., Eggett, D., & Ogden, L. (2011). β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of Dairy Science, 94(7), 3242–3249. https://doi.org/10.3168/jds.2010-3742

    Article  CAS  PubMed  Google Scholar 

  51. Wierzbicka-Woś, A., Cieśliński, H., Wanarska, M., Kozłowska-Tylingo, K., Hildebrandt, P., & Kur, J. (2011). A novel cold-active β-D-galactosidase from the Paracoccus sp. 32d - Gene cloning, purification and characterization. Microbial Cell Factories, 10(1), 108. https://doi.org/10.1186/1475-2859-10-108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernandes, S., Geueke, B., & Delgado, O. J. (2002). β-Galactosidase from a cold-adapted bacterium: Purification, characterization and application for lactose hydrolysis. Applied Microbiology and Biotechnology, 58(3), 313–321. https://doi.org/10.1007/s00253-001-0905-4

    Article  CAS  PubMed  Google Scholar 

  53. Makowski, K., Białkowska, A., Szczęsna-Antczak, M., Kalinowska, H., Kur, J., Cieśliński, H., & Turkiewicz, M. (2007). Immobilized preparation of cold-adapted and halotolerant Antarctic Î2-galactosidase as a highly stable catalyst in lactose hydrolysis. FEMS Microbiology Ecology, 59(2), 535–542. https://doi.org/10.1111/j.1574-6941.2006.00208.x

    Article  CAS  PubMed  Google Scholar 

  54. Amaro, T. M., Rosa, D., Comi, G., & Iacumin, L. (2019). Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00992

  55. Chen, W., Chen, H., Xia, Y., Yang, J., Zhao, J., Tian, F., & Zhang, H. (2009). Immobilization of recombinant thermostable β-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. Journal of Dairy Science, 92(2), 491–498. https://doi.org/10.3168/jds.2008-1618

    Article  CAS  PubMed  Google Scholar 

  56. Grosova, Z., Rosenberg, M., Rebros, M., Sipocz, M., & Sedlackova, B. (2008). Entrapment of β galactosidase in polyvinyl alcohol hydrogel. Biotechnology Letters, 30, 763–767.

    Article  CAS  PubMed  Google Scholar 

  57. Rejikumar, S., & Devi, S. (2001). Hydrolysis of lactose and milk whey using a fixed-bed reactor containing beta-galactosidase covalently bound onto chitosan and cross-linked poly(vinyl alcohol). International Journal of Food Science and Technology, 36(1), 91–98. https://doi.org/10.1046/j.1365-2621.2001.00425.x

    Article  CAS  Google Scholar 

  58. Haider, T., & Husain, Q. (2009). Immobilization of β-galactosidase by bioaffinity adsorption on concanavalin A layered calcium alginate–starch hybrid beads for the hydrolysis of lactose from whey/milk. International Dairy Journal, 19(3), 172–177. https://doi.org/10.1016/j.idairyj.2008.10.005

    Article  CAS  Google Scholar 

  59. Neri, D. F., Balcão, V. M., Carneiro-da-Cunha, M. G., Carvalho, L. B., Jr., & Teixeira, J. A. (2008). Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catalysis Communications, 9(14), 2334–2339. https://doi.org/10.1016/j.catcom.2008.05.022

    Article  CAS  Google Scholar 

  60. Bayramoglu, G., Tunali, Y., & Arica, M. Y. (2007). Immobilization of β-galactosidase onto magnetic poly(GMA–MMA) beads for hydrolysis of lactose in bed reactor. Catalysis Communications, 8(7), 1094–1101. https://doi.org/10.1016/j.catcom.2006.10.029

    Article  CAS  Google Scholar 

  61. Roy, I., & Gupta, M. N. (2003). Lactose hydrolysis by Lactozym™ immobilized on cellulose beads in batch and fluidized bed modes. Process Biochemistry, 39(3), 325–332. https://doi.org/10.1016/s0032-9592(03)00086-4

    Article  CAS  Google Scholar 

  62. Martins, G. N., Ureta, M. M., Tymczyszyn, E. E., Castilho, P. C., & Gomez-Zavaglia, A. (2019). Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic Synthesis and Hydrolysis. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00078

  63. Li, S., Zhu, X., & Xing, M. (2019). A new β-galactosidase from the Antarctic bacterium Alteromonas sp. ANT48 and its potential in formation of prebiotic galacto-oligosaccharides. Marine Drugs, 17(11), 599. https://doi.org/10.3390/md17110599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding, H., Zhou, L., Zeng, Q., Yu, Y., & Chen, B. (2018). Heterologous expression of a thermostable β-1,3-galactosidase and its potential in synthesis of galactooligosaccharides. Marine Drugs, 16(11), 415. https://doi.org/10.3390/md16110415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pawlak-Szukalska, A., Wanarska, M., Popinigis, A. T., & Kur, J. (2014). A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB – Gene cloning, purification and characterization. Process Biochemistry, 49(12), 2122–2133. https://doi.org/10.1016/j.procbio.2014.09.018

    Article  CAS  Google Scholar 

  66. Guerrero, C., Vera, C., Plou, F., & Illanes, A. (2011). Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β-galactosidases. Journal of Molecular Catalysis B: Enzymatic, 72(3–4), 206–212. https://doi.org/10.1016/j.molcatb.2011.06.007

    Article  CAS  Google Scholar 

  67. Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252. https://doi.org/10.1016/j.procbio.2010.08.018

    Article  CAS  Google Scholar 

  68. Park, N. H., & Oh, D. K. (2005). Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnology Letters, 27(7), 495–497. https://doi.org/10.1007/s10529-005-2539-6

    Article  CAS  PubMed  Google Scholar 

  69. Silvério, S. C., Macedo, E. A., Teixeira, J. A., & Rodrigues, L. R. (2015). Perspectives on the biotechnological production and potential applications of lactosucrose: A review. Journal of Functional Foods, 19, 74–90. https://doi.org/10.1016/j.jff.2015.09.014

    Article  CAS  Google Scholar 

  70. Vera, C., Guerrero, C., Aburto, C., Cordova, A., & Illanes, A. (2020). Conventional and non-conventional applications of β-galactosidases. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(1), 140271. https://doi.org/10.1016/j.bbapap.2019.140271

    Article  CAS  PubMed  Google Scholar 

  71. Klewicki, R. (2000). Transglycosylation of a β-galactosyl radical, in the course of enzymic hydrolysis of lactose, in the Presence of selected polyhydroxyalcohols. Biotechnology Letters, 22, 1063–1066. https://doi.org/10.1023/A:1005698013715

    Article  CAS  Google Scholar 

  72. Klewicki, R. (2007). Effect of selected parameters of lactose hydrolysis in the presence of β-galactosidase from various sources on the synthesis of galactosyl-polyol derivatives. Engineering in Life Sciences, 7(3), 268–274. https://doi.org/10.1002/elsc.200620185

    Article  CAS  Google Scholar 

  73. Klewicki, R. (2007(b)). Formation of gal-sorbitol during lactose hydrolysis with β-galactosidase. Food Chemistry, 100(3), 1196–1201. https://doi.org/10.1016/j.foodchem.2005.10.064

    Article  CAS  Google Scholar 

  74. Klewicki, R., Belina, I., Wojciechowska, A., Klewicka, E., & Sójka, M. (2017). Synthesis of galactosyl mannitol derivative using β-galactosidase from Kluyveromyces lactis. Polish Journal of Food and Nutrition Sciences, 67(1), 33–39. https://doi.org/10.1515/pjfns-2016-0002

    Article  CAS  Google Scholar 

  75. Irazoqui, G., Giacomini, C., Batista-Viera, F., Brena, B. M., Cardelle-Cobas, A., Corzo, N., & Jimeno, M. L. (2009). Characterization of galactosyl derivatives obtained by transgalactosylation of lactose and different polyols using immobilized β-galactosidase from Aspergillus oryzae. Journal of Agricultural and Food Chemistry, 57(23), 11302–11307. https://doi.org/10.1021/jf901834k

    Article  CAS  PubMed  Google Scholar 

  76. Kasche, V. (1986). Mechanism and yields in enzyme catalyzed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme and Microbial Technology, 8(1), 4–16. https://doi.org/10.1016/0141-0229(86)90003-7

    Article  CAS  Google Scholar 

  77. Rather, M., & Mishra, S. (2013). β-Glycosidases: An alternative enzyme based method for synthesis of alkyl-glycosides. Sustainable Chemical Processes, 1(1), 7. https://doi.org/10.1186/2043-7129-1-7

    Article  CAS  Google Scholar 

  78. Fernandez-Lafuente, R. (2009). Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45, 405–418.

    Article  CAS  Google Scholar 

  79. Dwevedi, A., & Kayastha, A. M. (2009). Optimal immobilizationof β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and itsapplications. Bioresource Technology, 100(10), 2667–2675.

    Article  CAS  PubMed  Google Scholar 

  80. Burcu, C., Canan, T., & Sebnem, T. H. (2014). β-Galactosidase immobilization on chitosan-hydroxyapatite complex. Journal of Nutritional Health & Food Engineering, 1(1), 13–23.

    Google Scholar 

  81. Stevenson, D. K., Crawford, J. S., & Carroll, J. O. (1983). Enzymatic hydrolysis of lactose in ice-cream. Journal of Dairy Science, 66, 75–78.

    Google Scholar 

  82. Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology and Biotechnology, 81, 530.

    Article  CAS  Google Scholar 

  83. Batsalova, K. K., Kunchev, Y., Popova, A. K., & Kirova, N. (1987). Hydrolysis of lactose by β-galactosidase immobilized in polyvinylalcohol. Applied Microbiology and Biotechnology, 26, 227–230.

    Article  CAS  Google Scholar 

  84. Yang, S. T., & Okos, M. R. (1989). Effects of temperature on lactose hydrolysis by immobilized β-galactosidase in plug-flow reactor. Biotechnology and Bioengineering, 33(7), 873–885.

    Article  CAS  PubMed  Google Scholar 

  85. Nakanishi, K., Matsuno, R., Torii, K., Yamamoto, K., & Kamikubo, T. (1983). Properties of immobilized β-d-galactosidasefrom Bacillus circulans. Enzyme and Microbial Technology, 5, 115–120.

    Article  CAS  Google Scholar 

  86. Ladero, M., Santos, A., & Garcia-Ochoa, F. (2000). Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 27, 583–629.

    Article  CAS  PubMed  Google Scholar 

  87. Roy, I., & Gupta, M. N. (2003). Lactose hydrolysis by Lactozyme immobilized on cellulose beads in batch and fluidized bed modes. Process Biochemistry, 39, 325–332.

    Article  CAS  Google Scholar 

  88. Pessela, B. C., Mateo, C., & Fuentes, M. (2003). The immobilizationof a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products. Enzyme and Microbial Technology, 33, 199–205.

    Article  CAS  Google Scholar 

  89. Peterson, R. S., Hill, C. G., & Amundson, C. H. (1989). Effects oftemperature on the hydrolysis of lactose by immobilized β-galactosidase in a capillary bed reactor. Biotechnology and Bioengineering, 34(4), 429–437.

    Article  CAS  PubMed  Google Scholar 

  90. D’Souza, S. F., Kaul, R., & Nadkarni, G. B. (1985). A method for thepreparation of hen egg white beads containing immobilizedbiocatalysts. Biotechnology Letters, 7, 589–592.

    Article  Google Scholar 

  91. El-Gindy, A. (2003). Production, partial purification and someproperties of β-galactosidase from Aspergillus carbonarius. Folia Microbiologica, 48, 581–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Biochemistry, Yogi Vemana University, Kadapa, for providing computation and other facilities to complete this article. R. Chikati sincerely thank the University Grant Commission (UGC), New Delhi (Lr. No. F 11-48/2008 (BSR), dated 12-02-2010) for financial support and also the D.S. Kothari Post Doctoral Fellowship (No. F. 4-2/06 (BSR)/BL/13-14/0228; dated 02/12/13). SLP gratefully acknowledges DBT (BT/PR30629/BIC/101/1093/2018), New Delhi; UGC (Ref No.: No. F. 30-456/2018 (BSR) and SERB (Ref No.: PDF/2015/000867) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Collection of literature and drafting the manuscript: LJR and PSK; conceptualized the study: LJR and RSC; computational validation of data and its reliability check: CRS; overall supervision of the study: PRC; validation and final preparation of the manuscript: PRC and AM.

Corresponding authors

Correspondence to Rajashekar Chikati, Arifullah Mohammed or Ramachandra Reddy Pamuru.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the manuscript for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, L.J., Kumar, P.S., Pandrangi, S.L. et al. A Review on Psychrophilic β-D-Galactosidases and Their Potential Applications. Appl Biochem Biotechnol 195, 2743–2766 (2023). https://doi.org/10.1007/s12010-022-04215-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04215-w

Keywords

Navigation