Skip to main content
Log in

4,4′-Diaponeurosporene Production as C30 Carotenoid with Antioxidant Activity in Recombinant Escherichia coli

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carotenoids, a group of isoprenoid pigments, are naturally synthesized by various microorganisms and plants, and are industrially used as ingredients in food, cosmetic, and pharmaceutical product formulations. Although several types of carotenoids and diverse microbial carotenoid producers have been reported, studies on lactic acid bacteria (LAB)-derived carotenoids are relatively insufficient. There is a notable lack of research focusing on C30 carotenoids, the functional characterizations of their biosynthetic genes and their mass production by genetically engineered microorganisms. In this study, the biosynthesis of 4,4′-diaponeurosporene in Escherichia coli harboring the core biosynthetic genes, dehydrosqualene synthase (crtM) and dehydrosqualene desaturase (crtN), from Lactiplantibacillus plantarum subsp. plantarum KCCP11226 was constructed to evaluate and enhance 4,4′-diaponeurosporene production and antioxidant activity. The production of 4,4′-diapophytoene, a substrate of 4,4′-diaponeurosporene, was confirmed in E. coli expressing only the crtM gene. In addition, recombinant E. coli carrying both C30 carotenoid biosynthesis genes (crtM and crtN) was confirmed to biosynthesize 4,4′-diaponeurosporene and exhibited a 6.1-fold increase in carotenoid production compared to the wild type and had a significantly higher antioxidant activity compared to synthetic antioxidant, butylated hydroxytoluene. This study presents the discovery of an important novel E. coli platform in consideration of the industrial applicability of carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All authors have confirmed that the data used in this manuscript have been presented clearly, honestly, and without falsification or inappropriate data manipulation (including image-based manipulation).

Code Availability

Not applicable.

References

  1. Armstrong, G. A. (1997). Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annual Reviews in Microbiology, 51, 629–659.

    Article  CAS  Google Scholar 

  2. Yatsunami, R., Ando, A., Yang, Y., Takaichi, S., Kohno, M., Matsumura, Y., Ikeda, H., Fukui, T., Nakasone, K., & Fujita, N. (2014). Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Frontiers in Microbiology, 5, 100.

    Article  Google Scholar 

  3. Nakano, T., & Wiegertjes, G. (2020). Properties of carotenoids in fish fitness: A Review. Marine Drugs, 18, 568.

    Article  CAS  Google Scholar 

  4. Noviendri, D., Hasrini, R. F., & Octavianti, F. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. Journal of Medicinal Plants Research, 5, 7119–7131.

    Google Scholar 

  5. Sowmya, R., & Sachindra, N. (2012). Evaluation of antioxidant activity of carotenoid extract from shrimp processing by products by in vitro assays and in membrane model system. Food Chemistry, 134, 308–314.

    Article  CAS  Google Scholar 

  6. Elliott, R. (2005). Mechanisms of genomic and non-genomic actions of carotenoids. Biochimica et Biophysica Acta, 1740, 147–154.

    Article  CAS  Google Scholar 

  7. Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207–216.

    Article  CAS  Google Scholar 

  8. Rock, C. L. (1997). Carotenoids: Biology and treatment. Pharmacology & Therapeutics, 75, 185–197.

    Article  CAS  Google Scholar 

  9. Woodside, J. V., McGrath, A. J., Lyner, N., & McKinley, M. C. (2015). Carotenoids and health in older people. Maturitas, 80, 63–68.

    Article  CAS  Google Scholar 

  10. Yamanushi, T. T., Torii, M. I., Janjua, N., & Kabuto, H. (2009). In vivo tissue uptake of intravenously injected water soluble all-trans β-carotene used as a food colorant. Nutrition Journal, 8, 56.

    Article  Google Scholar 

  11. Klein-Marcuschamer, D., Ajikumar, P. K., & Stephanopoulos, G. (2007). Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends in Biotechnology, 25, 417–424.

    Article  CAS  Google Scholar 

  12. Lee, P., & Schmidt-Dannert, C. (2002). Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Applied Microbiology and Biotechnology, 60, 1–11.

    Article  CAS  Google Scholar 

  13. Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., & Wang, Q. (2012). Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry, 135, 1914–1919.

    Article  CAS  Google Scholar 

  14. Miyoshi, A., Rochat, T., Gratadoux, J.-J., Le Loir, Y., Oliveira, S. C., Langella, P., & Azevedo, V. (2003). Oxidative stress in Lactococcus lactis. Genetics and Molecular Research, 2, 348–359.

    CAS  Google Scholar 

  15. Serrano, L. M., Molenaar, D., Wels, M., Teusink, B., Bron, P. A., De Vos, W. M., & Smid, E. J. (2007). Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microbial Cell Factories, 6, 29.

    Article  Google Scholar 

  16. Garrido-Fernández, J., Maldonado-Barragán, A., Caballero-Guerrero, B., Hornero-Méndez, D., & Ruiz-Barba, J. L. (2010). Carotenoid production in Lactobacillus plantarum. International Journal of Food Microbiology, 140, 34–39.

    Article  Google Scholar 

  17. Hagi, T., Kobayashi, M., Kawamoto, S., Shima, J., & Nomura, M. (2013). Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. Journal of Applied Microbiology, 114, 1763–1771.

    Article  CAS  Google Scholar 

  18. Turpin, W., Renaud, C., Avallone, S., Hammoumi, A., Guyot, J.-P., & Humblot, C. (2016). PCR of crtNM combined with analytical biochemistry: An efficient way to identify carotenoid producing lactic acid bacteria. Systematic and Applied Microbiology, 39, 115–121.

    Article  CAS  Google Scholar 

  19. Jing, Y., Liu, H., Xu, W., & Yang, Q. (2017). Amelioration of the DSS-induced colitis in mice by pretreatment with 4,4′-diaponeurosporene-producing Bacillus subtilis. Experimental and Therapeutic Medicine, 14, 6069–6073.

    CAS  Google Scholar 

  20. Liu, H., Xu, W., Chang, X., Qin, T., Yin, Y., & Yang, Q. (2016). 4,4′-Diaponeurosporene, a C30 carotenoid, effectively activates dendritic cells via CD36 and NF-κB signaling in a ROS independent manner. Oncotarget, 7, 40978.

    Article  Google Scholar 

  21. Jing, Y., Liu, H., Xu, W., & Yang, Q. (2019). 4,4′-Diaponeurosporene-producing Bacillus subtilis promotes the development of the mucosal immune system of the piglet gut. The Anatomical Record, 302, 1800–1807.

    Article  CAS  Google Scholar 

  22. Liu, H., Xu, W., Yu, Q., & Yang, Q. (2017). 4,4′-Diaponeurosporene-producing Bacillus subtilis increased mouse resistance against Salmonella typhimurium infection in a CD36-dependent manner. Frontiers in Immunology, 8, 483.

    Article  Google Scholar 

  23. Ernst, H. (2002). Recent advances in industrial carotenoid synthesis. Pure and Applied Chemistry, 74, 1369–1382.

    Article  CAS  Google Scholar 

  24. Johnson, E. A., & Schroeder, W. A. (1995). Microbial carotenoids. In A. Fiechter (Ed.), Downstream Processing Biosurfactants Carotenoids (pp. 119–178). Springer.

    Chapter  Google Scholar 

  25. Mata-Gómez, L. C., Montañez, J. C., Méndez-Zavala, A., & Aguilar, C. N. (2014). Biotechnological production of carotenoids by yeasts: An overview. Microbial Cell Factories, 13, 12.

    Article  Google Scholar 

  26. Valla, A. R., Cartier, D. L., & Labia, R. (2004). Chemistry of natural retinoids and carotenoids: Challenges for the future. Current Organic Synthesis, 1, 167–209.

    Article  CAS  Google Scholar 

  27. Xue, D., Abdallah, I. I., de Haan, I. E., Sibbald, M. J., & Quax, W. J. (2015). Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes. Applied Microbiology and Biotechnology, 99, 5907–5915.

    Article  CAS  Google Scholar 

  28. Umeno, D., Tobias, A. V., & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews, 69, 51–78.

    Article  CAS  Google Scholar 

  29. Yang, D., Park, S. Y., Park, Y. S., Eun, H., & Lee, S. Y. (2020). Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 38, 745–765.

    Article  CAS  Google Scholar 

  30. Kim, S. H., Kim, M. S., Lee, B. Y., & Lee, P. C. (2016). Generation of structurally novel short carotenoids and study of their biological activity. Scientific Reports, 6, 21987.

    Article  CAS  Google Scholar 

  31. Chen, F., Di, H., Wang, Y., Cao, Q., Xu, B., Zhang, X., Yang, N., Liu, G., Yang, C.-G., & Xu, Y. (2016). Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nature Chemical Biology, 12, 174.

    Article  CAS  Google Scholar 

  32. Chae, H. S., Kim, K.-H., Kim, S. C., & Lee, P. C. (2010). Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Applied Biochemistry and Biotechnology, 162, 2333–2344.

    Article  CAS  Google Scholar 

  33. Kim, J., Kong, M. K., Lee, S. Y., & Lee, P. C. (2010). Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World Journal of Microbiology and Biotechnology, 26, 2231–2239.

    Article  CAS  Google Scholar 

  34. Kim, S. H., & Lee, P. C. (2012). Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli. Journal of Biological Chemistry, 287, 21575–21583.

    Article  CAS  Google Scholar 

  35. Lee, P. C., Momen, A. Z. R., Mijts, B. N., & Schmidt-Dannert, C. (2003). Biosynthesis of structurally novel carotenoids in Escherichia coli. Chemistry & Biology, 10, 453–462.

    Article  CAS  Google Scholar 

  36. Kim, M., Seo, D.-H., Park, Y.-S., Cha, I.-T., & Seo, M.-J. (2019). Isolation of Lactobacillus plantarum subsp. plantarum producing C30 carotenoid 4,4′-diaponeurosporene and the assessment of its antioxidant activity. Journal of Microbiology and Biotechnology, 29, 1925–1930.

    Article  CAS  Google Scholar 

  37. Kim, M., Jung, D.-H., Seo, D.-H., Chung, W.-H., & Seo, M.-J. (2020). Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway. 3 Biotech, 10, 150.

    Article  Google Scholar 

  38. Kim, M., Jung, D.-H., Seo, D.-H., Park, Y.-S., & Seo, M.-J. (2021). 4,4′-Diaponeurosporene from Lactobacillus plantarum subsp. plantarum KCCP11226: Low temperature stress-induced production enhancement and in vitro antioxidant activity. Journal of Microbiology and Biotechnology, 31, 63–69.

    Article  CAS  Google Scholar 

  39. Lane, D. (1991). In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic Acid Techniques in Bacterial Systematic (pp. 115–175). Wiley.

    Google Scholar 

  40. Roginsky, V., & Lissi, E. A. (2005). Review of methods to determine chain-breaking antioxidant activity in food. Food Chemistry, 92, 235–254.

    Article  CAS  Google Scholar 

  41. Frankel, E. N., & Meyer, A. S. (2000). The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80, 1925–1941.

    Article  CAS  Google Scholar 

  42. Hengst, C., Werner, S., Müller, L., Fröhlich, K., & Böhm, V. (2009). Determination of the antioxidant capacity: Influence of the sample concentration on the measured values. European Food Research and Technology, 230, 249–254.

    Article  CAS  Google Scholar 

  43. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.

    Article  CAS  Google Scholar 

  44. Müller, L., Fröhlich, K., & Böhm, V. (2011). Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 129, 139–148.

    Article  Google Scholar 

  45. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22, 1399–1408.

    Article  CAS  Google Scholar 

  46. Tokatlidis, K., Dhurjati, P., Millet, J., Béguin, P., & Aubert, J.-P. (1991). High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Letters, 282, 205–208.

    Article  CAS  Google Scholar 

  47. García-Fruitós, E., Carrió, M. M., Arís, A., & Villaverde, A. (2005). Folding of a misfolding-prone β-galactosidase in absence of DnaK. Biotechnology and Bioengineering, 90, 869–875.

    Article  Google Scholar 

  48. Worrall, D., & Goss, N. (1989). The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli. Australian Journal of Biotechnology, 3, 28–32.

    CAS  Google Scholar 

  49. García-Fruitós, E., González-Montalbán, N., Morell, M., Vera, A., Ferraz, R. M., Arís, A., Ventura, S., & Villaverde, A. (2005). Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microbial Cell Factories, 4, 27.

    Article  Google Scholar 

  50. Vallejo, L. F., & Rinas, U. (2004). Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microbial Cell Factories, 3, 11.

    Article  Google Scholar 

  51. Yoshida, K., Ueda, S., & Maeda, I. (2009). Carotenoid production in Bacillus subtilis achieved by metabolic engineering. Biotechnology Letters, 31, 1789–1793.

    Article  CAS  Google Scholar 

  52. Wieland, B., Feil, C., Gloria-Maercker, E., Thumm, G., Lechner, M., Bravo, J. M., Poralla, K., & Gotz, F. (1994). Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4′-diaponeurosporene of Staphylococcus aureus. Journal of Bacteriology, 176, 7719–7726.

    Article  CAS  Google Scholar 

  53. Takemura, M., Takagi, C., Aikawa, M., Araki, K., Choi, S.-K., Itaya, M., Shindo, K., & Misawa, N. (2021). Heterologous production of novel and rare C30-carotenoids using Planococcus carotenoid biosynthesis genes. Microbial Cell Factories, 20, 194.

    Article  CAS  Google Scholar 

  54. Sandmann, G. (2001). Genetic manipulation of carotenoid biosynthesis: Strategies, problems and achievements. Trends in Plant Science, 6, 14–17.

    Article  CAS  Google Scholar 

  55. Şahin, İ, Özgeriş, F. B., Köse, M., Bakan, E., & Tümer, F. (2021). Synthesis, characterization, and antioxidant and anticancer activity of 1,4-disubstituted 1,2,3-triazoles. Journal of Molecular Structure, 1232, 130042.

    Article  Google Scholar 

  56. Flores, N., Hoyos, S., Venegas, M., Galetović, A., Zúñiga, L. M., Fábrega, F., Paredes, B., Salazar-Ardiles, C., Vilo, C., Ascaso, C., Wierzchos, J., Souza-Egipsy, V., Araya, J. E., Batista-García, R. A., & Gómez-Silva, B. (2020). Haloterrigena sp. strain SGH1, a bacterioruberin-rich, perchlorate-tolerant halophilic archaeon isolated from halite microbial communities, Atacama Desert, Chile. Frontiers in Microbiology, 11, 324.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MIST) (Grant No. 2019R1A2C1006038 and 2022R1F1A1062699). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2021R1A6A3A01087585). In addition, this research was supported by the Ottogi Ham Taiho Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Myung-Ji Seo designed and coordinated all the experiments; Mibang Kim performed in vitro experiments on 4,4′-diaponeurosporene production in E. coli and wrote the manuscript draft; Dong-Hyun Jung and Young-Seo Park analyzed the research data and reviewed the manuscript. Chi Young Hwang and Inonge Noni Siziya performed antioxidant activity of 4,4′-diaponeurosporene and analyzed the carotenoid production level. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Myung-Ji Seo.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 515 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Jung, DH., Hwang, C.Y. et al. 4,4′-Diaponeurosporene Production as C30 Carotenoid with Antioxidant Activity in Recombinant Escherichia coli. Appl Biochem Biotechnol 195, 135–151 (2023). https://doi.org/10.1007/s12010-022-04147-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04147-5

Keywords

Navigation