Skip to main content
Log in

Analysis of Novel Antioxidant Sesquarterpenes (C35 Terpenes) Produced in Recombinant Corynebacterium glutamicum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Novel synthetic isoprenoids have been synthesized in engineered microbial hosts by evolving terpene synthase or expressing heterologous terpene synthases. Recently, the native operon, crtNaNcM derived from Planococcus sp. PAMC 21323, has isolated for potential industrial applications of C35 carotenoids. For the first time, novel C35 carotenoids (sesquarterpene) were synthesized in Corynebacterium glutamicum expressing the crtNaNcM genes. The recombinant strains accumulate various sesquarterpene including 4-apolycopene (red color), 4-aponeurosporene (yellow color), and no pigmentation, depending on the expression of the genetic elements of the crtNaNcM genes. Subsequently, the carotenoid extract from the cells harboring pCES-H36-CrtNaNcM was analyzed, resulting in significantly higher antioxidant activity than those of other strains harboring pCES-H36-CrtNcM and pCES-H36-CrtNaNc, respectively. This study will promote further engineering of C. glutamicum to increase sesquarterpene productions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Netzer, R., Stafsnes, M. H., Andreassen, T., Goksoyr, A., Bruheim, P., & Brautaset, T. (2010). Biosynthetic pathway for gamma-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases. Journal of Bacteriology, 192(21), 5688–5699.

    Article  CAS  Google Scholar 

  2. Tobias, A. V., & Arnold, F. H. (2006). Biosynthesis of novel carotenoid families based on unnatural carbon backbones: a model for diversification of natural product pathways. Biochimica et Biophysica Acta, 1761(2), 235–246.

    Article  CAS  Google Scholar 

  3. Umeno, D., Tobias, A. V., & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews, 69(1), 51–78.

    Article  CAS  Google Scholar 

  4. Albrecht, M., Takaichi, S., Steiger, S., Wang, Z. Y., & Sandmann, G. (2000). Novel hydroxycarotenoids with improved antioxidative properties produced by gene combination in Escherichia coli. Nature Biotechnology, 18(8), 843–846.

    Article  CAS  Google Scholar 

  5. Osawa, A., Ishii, Y., Sasamura, N., Morita, M., Kasai, H., Maoka, T., & Shindo, K. (2010). Characterization and antioxidative activities of rare C(50) carotenoids-sarcinaxanthin, sarcinaxanthin monoglucoside, and sarcinaxanthin diglucoside-obtained from Micrococcus yunnanensis. Journal of Oleo Science, 59(12), 653–659.

    Article  CAS  Google Scholar 

  6. Lee, P. C., & Schmidt-Dannert, C. (2002). Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Applied Microbiology and Biotechnology, 60(1-2), 1–11.

    Article  CAS  Google Scholar 

  7. Shindo, K., Endo, M., Miyake, Y., Wakasugi, K., Morritt, D., Bramley, P. M., Fraser, P. D., Kasai, H., & Misawa, N. (2014). Methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, a novel antioxidative glyco-C30-carotenoic acid produced by a marine bacterium Planococcus maritimus. Journal of Antibiotics, 67(10), 731–732.

    Article  CAS  Google Scholar 

  8. Umeno, D., & Arnold, F. H. (2003). A C35 carotenoid biosynthetic pathway. Applied and Environmental Microbiology, 69(6), 3573–3579.

    Article  CAS  Google Scholar 

  9. Heider, S. A. E., Peters-Wendisch, P., & Wendisch, V. F. (2012). Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 12(1), 198.

    Article  CAS  Google Scholar 

  10. Krubasik, P., Takaichi, S., Maoka, T., Kobayashi, M., Masamoto, K., & Sandmann, G. (2001). Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Archives of Microbiology, 176(3), 217–223.

    Article  CAS  Google Scholar 

  11. Kang, M. K., Eom, J. H., Kim, Y., Um, Y., & Woo, H. M. (2014). Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnology Letters, 36(10), 2069–2077.

    Article  CAS  Google Scholar 

  12. Heider, S. A. E., Wolf, N., Hofemeier, A., Peters-Wendisch, P., & Wendisch, V. F. (2014). Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2. https://doi.org/10.3389/fbioe.2014.00028

  13. Woo, H. M., & Park, J. B. (2014). Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. Journal of Biotechnology, 180, 43–51.

    Article  CAS  Google Scholar 

  14. Yim, S. S., An, S. J., Kang, M., Lee, J., & Jeong, K. J. (2013). Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnology and Bioengineering, 110(11), 2959–2969.

    Article  CAS  Google Scholar 

  15. Kim, C.-H., Park, M.-K., Kim, S.-K., & Cho, Y.-H. (2014). Antioxidant capacity and anti-inflammatory activity of lycopene in watermelon. International Journal of Food Science & Technology, 49(9), 2083–2091.

    Article  CAS  Google Scholar 

  16. Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205.

    Article  CAS  Google Scholar 

  17. Steiger, S., Sandmann, G., Fraser, P. D., Perez-Fons, L., & Cutting, S. M. (2015). Annotation and functional assignment of the genes for the C30 carotenoid pathways from the genomes of two bacteria: Bacillus indicus and Bacillus firmus. Microbiology, 161(1), 194–202.

    Article  CAS  Google Scholar 

  18. Raisig, A., & Sandmann, G. (2001). Functional properties of diapophytoene and related desaturases of C(30) and C(40) carotenoid biosynthetic pathways. Biochimica et Biophysica Acta, 1533(2), 164–170.

    Article  CAS  Google Scholar 

  19. Takaichi, S. (2000). Characterization of carotenes in a combination of a C(18) HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynthesis Research, 65(1), 93–99.

    Article  CAS  Google Scholar 

  20. Takaichi, S., Inoue, K., Akaike, M., Kobayashi, M., Oh-oka, H., & Madigan, M. T. (1997). The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Archives of Microbiology, 168(4), 277–281.

    Article  CAS  Google Scholar 

  21. Köcher, S., Breitenbach, J., Müller, V., & Sandmann, G. (2008). Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Archives of Microbiology, 191, 95–104.

    Article  Google Scholar 

  22. Sharoni, Y., Linnewiel-Hermoni, K., Khanin, M., Salman, H., Veprik, A., Danilenko, M., & Levy, J. (2012). Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Molecular Nutrition & Food Research, 56(2), 259–269.

    Article  CAS  Google Scholar 

  23. Firn, R. D., & Jones, C. G. (2000). The evolution of secondary metabolism—a unifying model. Molecular Microbiology, 37(5), 989–994.

    Article  CAS  Google Scholar 

  24. Kim, S. H., Kim, J. H., Lee, B. Y., & Lee, P. C. (2014). The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304. Applied Microbiology and Biotechnology, 98(24), 9993–10003.

    Article  CAS  Google Scholar 

  25. Lee, P. C., Salomon, C., Mijts, B., & Schmidt-Dannert, C. (2008). Biosynthesis of ubiquinone compounds with conjugated prenyl side chains. Applied and Environmental Microbiology, 74(22), 6908–6917.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would liketo thank Dr. Ki Jun Jeong at KAIST for providing a pCES-H36-GFP vector.

Funding

This study was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No.NRF-2015R1A2A2A01004733), by Golden Seed Project (213008-05-2-SB910), Ministry of Agriculture, Ministry of Oceans and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-il Choi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, S., Woo, H.M. & Choi, Ji. Analysis of Novel Antioxidant Sesquarterpenes (C35 Terpenes) Produced in Recombinant Corynebacterium glutamicum. Appl Biochem Biotechnol 186, 525–534 (2018). https://doi.org/10.1007/s12010-018-2756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2756-9

Keywords

Navigation