Skip to main content
Log in

Strain-Dependent Carotenoid Productions in Metabolically Engineered Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Seven Escherichia coli strains, which were metabolically engineered with carotenoid biosynthetic pathways, were systematically compared in order to investigate the strain-specific formation of carotenoids of structural diversity. C30 acyclic carotenoids, diaponeurosporene and diapolycopene were well produced in all E. coli strains tested. However, the C30 monocyclic diapotorulene formation was strongly strain dependent. Reduced diapotorulene formation was observed in the E. coli strain Top10, MG1655, and MDS42 while better formation was observed in the E. coli strain JM109, SURE, DH5a, and XL1-Blue. Interestingly, C40 carotenoids, which have longer backbones than C30 carotenoids, also showed strain dependency as C30 diapotorulene did. Quantitative analysis showed that the SURE strain was the best producer for C40 acyclic lycopene, C40 dicyclic β-carotene, and C30 monocyclic diapotorulene. Of the seven strains examined, the highest volumetric productivity for most of the carotenoids structures was observed in the recombinant SURE strain. In conclusion, we showed that recombinant hosts and carotenoid structures influenced carotenoid productions significantly, and this information can serve as the basis for the subsequent development of microorganisms for carotenoids of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, P. C., & Schmidt-Dannert, C. (2002). Applied Microbiology and Biotechnology, 60, 1–11.

    Article  CAS  Google Scholar 

  2. Vershinin, A. (1999). Biofactors, 10, 99–104.

    Article  CAS  Google Scholar 

  3. Johnson, E., & Schroeder, W. (1995). Advances in Biochemical Engineering/Biotechnology, 53, 119–178.

    Article  Google Scholar 

  4. Lee, P. C., Momen, A. Z. R., Mijts, B. N., & Schmidt-Dannert, C. (2003). Chemistry & Biology, 10, 453–462.

    Article  CAS  Google Scholar 

  5. Mijts, B. N., Lee, P. C., & Schmidt-Dannert, C. (2005). Chemistry & Biology, 12, 453–460.

    Article  CAS  Google Scholar 

  6. Ye, R. W., Yao, H., Stead, K., Wang, T., Tao, L., Cheng, Q., et al. (2007). Journal of Industrial Microbiology & Biotechnology, 34, 289–299.

    Article  CAS  Google Scholar 

  7. Tao, L., Yao, H., & Cheng, Q. (2007). Gene, 386, 90–97.

    Article  CAS  Google Scholar 

  8. Lee, P. C., Yoon, Y. G., & Schmidt-Dannert, C. (2009). Journal of Biotechnology, 140, 227–233.

    Article  CAS  Google Scholar 

  9. Bhataya, A., Schmidt-Dannert, C., & Lee, P. C. (2009). Process Biochemistry, 44, 1095–1102.

    Article  CAS  Google Scholar 

  10. Das, A., Yoon, S. H., Lee, S. H., Kim, J. Y., Oh, D. K., & Kim, S. W. (2007). Applied Microbiology and Biotechnology, 77, 505–512.

    Article  CAS  Google Scholar 

  11. Lee, P. C., Mijts, B. N., & Schmidt-Dannert, C. (2004). Applied Microbiology and Biotechnology, 65, 538–546.

    CAS  Google Scholar 

  12. Farmer, W. R., & Liao, J. C. (2000). Nature Biotechnology, 18, 533–537.

    Article  CAS  Google Scholar 

  13. Matthews, P. D., & Wurtzel, d E T. (2000). Applied Microbiology and Biotechnology, 53, 396–400.

    Article  CAS  Google Scholar 

  14. Yoon, S. H., Park, H. M., Kim, J. E., Lee, S. H., Choi, M. S., Kim, J. Y., et al. (2007). Biotechnology Progress, 23, 599–605.

    Article  CAS  Google Scholar 

  15. Yoon, S. H., Lee, Y. M., Kim, J. E., Lee, S. H., Lee, J. H., Kim, J. Y., et al. (2006). Biotechnology and Bioengineering, 94, 1025–1032.

    Article  CAS  Google Scholar 

  16. Kupisz, K., Sujak, A., Patyra, M., Trebacz, K., & Gruszecki, W. I. (2008). BBA-Biomembranes, 1778, 2334–2340.

    Article  CAS  Google Scholar 

  17. Kim, S. W., & Keasling, J. D. (2001). Biotechnology and Bioengineering, 72, 408–415.

    Article  CAS  Google Scholar 

  18. Kim, J., Kong, M. K., & Lee, P. C. (2010). World Journal of Microbiology & Biotechnology. doi:10.1007/s11274-010-0408-5.

    Google Scholar 

  19. Britton, G., Liaaen-Jensen, S., Pfander, H. (1995). Birkhauser, Basel.

  20. Schmidt-Dannert, C., Lee, P., & Mijts, B. (2006). Phytochemistry Reviews, 5, 67–74.

    Article  CAS  Google Scholar 

  21. Lee, J., Sung, B., Kim, M., Blattner, F., Yoon, B., Kim, J., et al. (2009). Microbial Cell Factories, 8, 2.

    Article  Google Scholar 

  22. Yoshikuni, Y., Dietrich, J. A., Nowroozi, F. F., Babbitt, P. C., & Keasling, J. D. (2008). Chemistry & Biology, 15, 607–618.

    Article  CAS  Google Scholar 

  23. Yu, B. J., Sung, B. H., Koob, M. D., Lee, C. H., Lee, J. H., Lee, W. S., et al. (2002). Nature Biotechnology, 20, 1018–1023.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2009-0066612 and NRF-2009-C1AAA001-2009-0093062). This work was also supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyung Cheon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, H.S., Kim, KH., Kim, S.C. et al. Strain-Dependent Carotenoid Productions in Metabolically Engineered Escherichia coli . Appl Biochem Biotechnol 162, 2333–2344 (2010). https://doi.org/10.1007/s12010-010-9006-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9006-0

Keywords

Navigation