Skip to main content
Log in

Microbial Treatment of Raw and Primary Treated Sanitary Landfill Leachate by Indigenous Strain Brevibacillus agri

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Landfill leachate is a potential environmental threat. Sanitary landfills are model sites which contains a leachate collection pool and a processing facility to treat it up to environmental standards before discharge. The present study is the very first endeavor to establish leachate treatment efficiency of indigenous microbial strain Brevibacillus agri. Leachate samples were inoculated with isolated strain and incubated for 41 days in an orbital shaker. Percent reduction in major water quality parameters was assessed after 0, 7, 21, and 41 days of incubation, for understanding the degradation kinetics. Results of the study demonstrate that Brevibacillus agri was effective in improving the wastewater quality of both raw and primary treated leachate. Overall reduction for different water quality parameters was found to be 50% higher for primary treated leachate than that for raw leachate within 21 days of incubation. Microbial degradation followed first-order kinetics with rate constants in the range of 0.0047–0.03 and 0.0061–0.074 day−1 for raw and primary treated leachate respectively. Calculated half-life of each pollutant parameter was significantly higher in the raw sample (23–147 days) as compared to the primary treated one (27–112 days). The leachate pollution index (LPI) value of the raw leachate was also found to be > 25% higher than primary treated leachate sample after microbial treatment. Hence, it can be concluded that on site application of primary treatment technology followed by secondary microbial degradation by indigenous microflora, viz., Brevibacillus sp., may prove effective to achieve desirable water quality for safe environmental discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source: Thirteen International Waste Management and Landfill symposium, Proceedings Sardine, 2011[16])

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is available.

References

  1. Vaverkova, M. D. (2019). Geosciences., 9(431), 1–16. https://doi.org/10.3390/geosciences9100431

    Article  CAS  Google Scholar 

  2. MSW. (Management and Handling) rules. (2000). Ministry of Environment and Forests, India.

  3. Ellouze, M., Aloui, F., & Sayadi, S. (2008). Journal of Hazardous Materials, 150, 642–648.

    Article  CAS  PubMed  Google Scholar 

  4. Castrillon, L., Fernández-Navaa, Y., Ulmanu, M., Anger, I., & Maranona, E. (2010). Waste Management, 30(2), 228–235.

    Article  CAS  PubMed  Google Scholar 

  5. Aziz, S. Q., Aziz, H. A., Yusoff, M. S., Bashir, A., Muhammad, M. J. K., & Umar, M. (2010). Journal of Environmental Management, 91, 2608–2614.

    Article  CAS  PubMed  Google Scholar 

  6. Rudianasari, A. S., Yohandri, B., Tresna, D., Achamad, J. S., & Susila, A. (2020). International Journal on Advance Science Engineering Information Technology, 1(10), 400–406.

    Article  Google Scholar 

  7. Zineb, H., Latifa, M., Salah, S., & Laila, S. (2020). Journal of Health & Pollution, 10, 28.

    Article  Google Scholar 

  8. Zhang, L., Lavagnolo, M. C., Bai, H., Pivato, A., Raga, R., & Yue, D. (2019). Resources, Conservation and Recycling, 141, 474–480. https://doi.org/10.1016/j.resconrec.2018.11.007

    Article  Google Scholar 

  9. Jain, R., Garg, V., Singh, K. P., & Gupta, S. (2012). International Journal of Environmental Sciences, 3(2), 1841–1851.

    Google Scholar 

  10. Silva, A. C., Dezotti, M., & Jr Sant’Ann, G. L. (2004). Chemosphere, 55, 207–214.

    Article  CAS  PubMed  Google Scholar 

  11. APHA. (2012) Standard methods for examination of water and wastewater. 22nd edn. Washington D.C.

  12. Ahmadian, M., Reshadat, S., Yousefi, N., Mirhossieni, S. H., Zare, M. R., Ghasemi, S. R., Gilan, N. R., Khamutian, R., & Fatehizadeh, A. (2013). J Environ Public Health, 3(5), 151–157. https://doi.org/10.12691/aees-3-5-5

    Article  CAS  Google Scholar 

  13. Jain. R., Majumdar. D., Mondal. R., (2021) in Spatial modeling and assessment of environmental contaminants. In: Environmental Challenges and Solutions (pp. 29–53). Springer.

  14. Krishnamurthi, S., & Chakrabarti, T. (2013). Systematic and Applied Microbiology, 36(1), 56–68.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, D., & Alappat, B. J. (2005). J Clean Technol Environ Pol, 7(3), 190–197.

    Article  CAS  Google Scholar 

  16. Salami, et al. (2015). BJAST, 5(1), 48–59.

    Article  Google Scholar 

  17. Afsar, S. S., Kumar, S., & Alam, P. (2015). International Journal of Advanced Technology in Engineering and Science, 3(1), 552–558.

    Google Scholar 

  18. Verma, M., & Kumar, N. K. (2017). Journal of Water Reuse and Desalination, 8(2), 234–243.

    Article  Google Scholar 

  19. Rana, R., Ganguly, R., & Gupta, A. K. (2018). Environmental Monitoring and Assessment, 190, 46.

    Article  Google Scholar 

  20. Dadrasnia, A., Usman, M. M., Wei, K. S. C., Velappan, R. D., Jamali, H., Mohebali, N., & Ismail, S. (2016). Proc Saf Environ Prot., 100, 264–271.

    Article  CAS  Google Scholar 

  21. Dadrasnia, A., Azirun, M. S., & Ismail, S. B. (2017). BMC Biotechnology, 17, 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ardeshir, R. A., Rastgar, S., Peyravi, M., Jahanshahi, M., & Rad, S. A. (2017). Environmental Technology, 38(19), 2447–2455. https://doi.org/10.1080/09593330.2016.1264488

    Article  CAS  Google Scholar 

  23. Yang, Y., Xie, L., Tao, X., Hu, K., & Huang, S. (2017). PLoS ONE, 12(707), e0178837.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, D., Vahala, R., Wang, Y., & Smets, B. F. (2016). International Biodeterioration and Biodegradation, 113, 88–96.

  25. Alvarez, P. J. J., & Vogel, T. M. (1991). Appl. Envir. Microbiology, 57, 2981–2985.

    Article  CAS  Google Scholar 

  26. Saidi, N., Khiari, L., Kouki, S., Ben Yahmed, A., Ben Rejeb, A., et al. (2011). Hydrol Current Res, S3, 001. https://doi.org/10.4172/2157-7587.S3-001

    Article  Google Scholar 

  27. Huang, L. N., Zhu, S., Zhou, H., & Qu, H. (2005). FEMS Microbiology Letters, 242, 297–303.

    Article  CAS  PubMed  Google Scholar 

  28. Siddiqqui, M. A. (2017). Research Journal of Environmental Sciences, 11, 65–70.

    Article  CAS  Google Scholar 

  29. Di Iaconi, C., Rossetti, S., Lopez, A., & Ried, A. (2011). ‘Chemical Engineering Journal, 168(3), 1085–1092.

    CAS  Google Scholar 

  30. Galvez, A., Greenman, J., & Ieropoulos, I. (2009). Bioresource Technology, 100(21), 5085–5091.

    Article  CAS  PubMed  Google Scholar 

  31. Mahmud, K., Hossain, M. D., & Shams, S. (2012). J. Waste. Manage., 32, 2096–2105.

    Article  CAS  Google Scholar 

  32. Brennan, R. B., Clifford, E., Devroedt, C., Morrison, L., & Healy, M. G. (2017). Journal of Environmental Management, 188, 64–72.

    Article  CAS  PubMed  Google Scholar 

  33. Feng, S., Hou, S., Huang, X., Fang, Z., Tong, Y., & Yang, H. (2019). Electronic Journal of Biotechnology, 39, 98–106.

    Article  CAS  Google Scholar 

  34. Heang, N. H., Chiemchaisri, C., Wilai, C., & Shoda, M. (2020). Bioresour. Technol. Reports, 11, 100528.

    Article  Google Scholar 

  35. Yasmin, C., Lobna, E., Mouna, M., Kais, D., Mariam, K., Rache, S., Abdelwaheb, C., & Ismail, T. (2020). International Biodeterioration and Biodegradation, 146, 104829.

    Article  CAS  Google Scholar 

  36. Song, J., Zhang, W., Gao, J., Hua, X., Zhang, C., Hee, Q., Yang, F., Wanga, H., Wanga, X., & Zhan, X. (2020). Bioresource Technology, 296, 122344.

    Article  CAS  PubMed  Google Scholar 

  37. Rani, G., Nabi, Z., Banu, R. J., & Yogalakshmi, K. N. (2020). Renewable Energy, 153, 168–174.

    Article  CAS  Google Scholar 

  38. Le, T. S., Dang, N. M., & Tran, T. T. (2021). Separation and Purification Technology, 255, 117677.

    Article  CAS  Google Scholar 

  39. Smaoui, Y., & Bouzid, J. (2020). Sayadi S. Environ. Eng. Res., 25(1), 80–87.

    Article  Google Scholar 

  40. Sharma, T., Kaur, M., Sobti, A., Rajor, A., & Toor, A. P. (2020). Environ. Eng. Res., 25, 597–604.

    Article  Google Scholar 

  41. Vincent, A. O., Felix, E., Weltime, M. O., Ize-iyamu, O. K., & Daniel, E. E. (2011). Res. J. Chem. Sci., 1(6), 8–14.

    CAS  Google Scholar 

  42. Moliterni, E., & Jime´nez-TussetVillarRodriguezFernandezVillasenor, R. G. R. M. L. F. J. J. (2012). International Journal of Environmental Science and Technology, 9, 749–758.

    Article  CAS  Google Scholar 

  43. Mathur, A. K., Majumder, C. B., Singh, D., & Bala, S. (2010). Journal of Environmental Biology, 31, 445–451.

    CAS  PubMed  Google Scholar 

  44. Yudono, B., Said, M., Sabaruddin, Napoleon, A., & Fanani, Z. (2011). J Trop Soils, 16(1), 33–38.

    Article  Google Scholar 

  45. Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaia, P. V., & Ramachandra, T. V. (2017). Environmental Pollution, 220, 1–12.

    Article  CAS  PubMed  Google Scholar 

  46. Bhalla, B., Saini, M. S., & Jha, M. K. (2012). Int J Innovative Res Sci Eng Technol, 3(1), 8447–8453.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Department of Biotechnology, Government of India under grant no. BT/PR2730S/BCE/8/1432/2018. The guidance and support of Director, CSIR-NEERI and HOD, CSIR-NEERI, Kolkata Zonal Center is highly appreciated. Analytical support of Ms. Prateeti Roy is highly appreciated. The KRC (Knowledge Resource Center of CSIR-National Environmental Engineering Research Institute) number for the manuscript is CSIR-NEERI/KRC/2022/JAN/KZC-HTC/1.

Funding

The project was funded by Department of Biotechnology, Government of India under grant no. BT/PR2730S/BCE/8/1432/2018.

Author information

Authors and Affiliations

Authors

Contributions

• Dr. Rachna Jain: conception, design, methodology, material preparation, data analysis, and original draft writing-review and editing.

• Dr. Dipanjali Majumdar: conception and design, methodology, formal analysis, investigation, validation, and review and editing.

• Dr. Saravana Devi: conception and design, formal analysis, and review and editing.

All the authors give their consent for submission of the manuscript to applied biochemistry and biotechnology.

Corresponding author

Correspondence to Rachna Jain.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 401 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Majumdar, D. & Devi, S. Microbial Treatment of Raw and Primary Treated Sanitary Landfill Leachate by Indigenous Strain Brevibacillus agri. Appl Biochem Biotechnol 195, 2317–2331 (2023). https://doi.org/10.1007/s12010-022-04056-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04056-7

Keywords

Navigation