Skip to main content
Log in

Lipid and Carotenoid Production by a Rhodosporidium toruloides and Tetradesmus obliquus Mixed Culture Using Primary Brewery Wastewater Supplemented with Sugarcane Molasses and Urea

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, Rhodosporidium toruloides and Tetradesmus obliquus were used for lipid and carotenoid production in mixed cultures using primary brewery wastewater (PBWW) as a culture medium, supplemented with sugarcane molasses (SCM) as a carbon source and urea as a nitrogen source. To improve biomass, lipid, and carotenoid production by R. toruloides and T. obliquus mixed cultures, initial SCM concentrations ranging from 10 to 280 g L−1 were tested. The medium that allowed higher lipid content (26.2% w/w dry cell weight (DCW)) and higher carotenoid productivity (10.47 µg L−1 h−1) was the PBWW medium supplemented with 100 g L−1 of SCM and 2 g L−1 of urea, which was further used in the fed-batch mixed cultivation performed in a 7-L bioreactor. A maximum biomass concentration of 58.6 g L−1 and maximum lipid content of 31.2% w/w DCW were obtained in the fed-batch cultivation. PBWW supplemented with SCM was successfully used as a low-cost medium to produce lipids and carotenoids in a R. toruloides and T. obliquus mixed culture, with higher productivities than in pure cultures, which can significantly reduce the cost of the biofuels obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Dias, C., Sousa, S., Caldeira, J., Reis, A., & Lopes da Silva, T. (2015). New dual-stage pH control fed-batch cultivation for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresource Technology, 189, 309–318.

    Article  CAS  Google Scholar 

  2. Ling, J., Nip, S., Cheok, W. L., Toledo, R. A., & Shim, H. (2014). Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresource Technology, 173, 132–139.

    Article  CAS  Google Scholar 

  3. Cho, H. U., & Park, J. M. (2018). Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresource Technology, 256, 502–508.

    Article  CAS  Google Scholar 

  4. Dias, C., Santos, J., Reis, A., & Lopes da Silva, T. (2019). Yeast and microalgal symbiotic cultures using low-cost substrates for lipid production. Bioresource Technology Reports, 7, 100261.

    Article  Google Scholar 

  5. Liang, M. H., & Jiang, J. G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52, 395–408.

    Article  CAS  Google Scholar 

  6. Qin, L., Liu, L., Zeng, A. P., & Wei, D. (2017). From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresource Technology, 245, 1507–1519.

    Article  CAS  Google Scholar 

  7. Gouveia, L., Oliveira, A. C., Congestri, R., Bruno, L., Soares, A. T., Menezes, R. S., Filho, N. R. A., & Tzovenis, I. (2018). Biodiesel from microalgae. In C. Gonzalez-Fernandez & R. Muñoz (Eds.), Microalgae-based biofuels and bioproducts: From feedstock cultivation to end-products (pp. 235–258). Woodhead Publishing.

    Google Scholar 

  8. Zhang, K., Zheng, J., Xue, D., Ren, D., & Lu, J. (2017). Effect of photoautotrophic and heteroautotrophic conditions on growth and lipid production in Chlorella vulgaris cultured in industrial wastewater with the yeast Rhodotorula glutinis. Journal of Applied Phycology, 29, 1–6.

    Article  Google Scholar 

  9. Dias, C., Reis, A., Santos, J. A. L., & Lopes da Silva, T. (2020). Concomitant wastewater treatment with lipid and carotenoid production by the oleaginous yeast Rhosdosporidium toruloides grown on brewery effluent enriched with sugarcane molasses and urea. Process Biochemistry, 94, 1–14.

    Article  CAS  Google Scholar 

  10. Schneider, T., Graeff-Hönninger, S., French, W. T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M., & Pham, P. (2013). Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy, 61, 1–10.

    Article  Google Scholar 

  11. Marchão, L., Lopes da Silva, T., Gouveia, L., & Reis, A. (2018). Microalgae-mediated brewery wastewater treatment: Effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology. Journal of Applied Phycology, 30, 1583–1595.

    Article  Google Scholar 

  12. Dias, C., Reis, A., Santos, J. A. L., Gouveia, L., & Lopes da Silva, T. (2022). Primary brewery wastewater as feedstock for the yeast Rhodosporidium toruloides and the microalga Tetradesmus obliquus mixed cultures with lipid production. Process Biochemistry, 113, 71–86.

    Article  CAS  Google Scholar 

  13. Dias, C., Gouveia, L., Santos, J. A. L., Reis, A., & Lopes da Silva, T. (2020). Using flow cytometry to monitor the stress response of yeast and microalgae populations in mixed cultures developed in brewery effluents. Journal of Applied Phycology, 32, 3687–3701.

    Article  CAS  Google Scholar 

  14. Dias, C., Silva, C., Freitas, C., Reis, A., & Lopes da Silva, T. (2016). Effect of medium pH on Rhodosporidium toruloides NCYC 921 carotenoid and lipid production evaluated by flow cytometry. Applied Biochemistry and Biotechnology, 179, 776–787.

    Article  CAS  Google Scholar 

  15. Saini, R., Hegde, K., Osorio-Gonzalez, C. S., Brar, S. K., & Vezina, P. (2020). Evaluating the Potential of Rhodosporidium toruloides-1588 for high lipid production using undetoxified wood hydrolysate as a carbon source. Energies, 13, 5960.

    Article  CAS  Google Scholar 

  16. Eida, M. F., Darwesh, O. M., & Matter, I. A. (2018). Cultivation of oleaginous microalgae Scenedesmus obliquus on secondary treated municipal wastewater as growth medium for biodiesel production. Journal of Ecological Engineering, 19, 38–51.

    Article  Google Scholar 

  17. Patias, L. D., Fernandes, A. S., Petry, F. C., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2017). Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Research International, 100, 260–266.

    Article  CAS  Google Scholar 

  18. Torres da Silva, M. E., Martins, M. A., Leite, M. O., Milião, G. L. & Coimbra, J. S. R. (2021). Microalga Scenedesmus obliquus: extraction of bioactive compounds and antioxidant activity. Revista Ciência Agronômica, 52(2), e20196848, Centro de Ciências Agrárias - Universidade Federal do Ceará, Fortaleza, CE https://doi.org/10.5935/1806-6690.20210036.

  19. Horwitz, W., & Latimer, G. W. (2005). Official Methods of Analysis of AOAC International (18th ed.). Association of Official Analytical Chemistry International.

    Google Scholar 

  20. APHA. (1998). Standard Methods for the Examination of Water and Wastewater. (20th ed.), American Public Health Association, American Water Works Association and Water Environmental Federation.

  21. Freitas, C., Nobre, B., Gouveia, L., Roseiro, J., Reis, A., & Lopes da Silva, T. (2014). New at-line flow cytometric protocols for determining carotenoid content and cell viability during Rhodosporidium toruloides NCYC 921 batch growth. Process Biochemistry, 49, 554–562.

    Article  CAS  Google Scholar 

  22. Ben-Amotz, A., Lers, A., & Avron, M. (1988). Stereoisomers of beta-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiology, 86, 1286–1291.

    Article  CAS  Google Scholar 

  23. Park, P. K., Kim, E., & Chu, K. (2007). Chemical disruption of yeast cells for the isolation of carotenoid pigments. Separation and Purification Technology, 53, 148–152.

    Article  CAS  Google Scholar 

  24. Maldonade, R., Scamparini, A. R. P., & Rodriguez-Amaya, D. (2007). Selection and characterization of carotenoid –producing yeast from Campinas region, Brazil. Brazilian Journal of Microbiology, 38, 65–70.

    Article  Google Scholar 

  25. Martins, J. A., Lopes da Silva, T., Marques, S., Carvalheiro, F., Roseiro, L. B., Duarte, L. C., & Gírio, F. (2021). The use of flow cytometry to assess Rhodosporidium toruloides NCYC 921 performance for lipid production using Miscanthus sp. hydrolysates. Biotechnology Reports, 30, e00639.

    Article  CAS  Google Scholar 

  26. Mata, T. M., Melo, A. C., Meireles, S., Mendes, A. M., Martins, A. A., & Caetano, N. S. (2013). Potential of microalgae Scenedesmus obliquus grown in brewery wastewater for biodiesel production. Chemical Engineering Transactions, 32, 901–906.

    Google Scholar 

  27. Dias, C., Gouveia, L., Santos, J. A. L., Reis, A., & Lopes da Silva, T. (2022). Rhodosporidium toruloides and Tetradesmus obliquus populations dynamics in symbiotic cultures, developed in brewery wastewater, for lipid production. Current Microbiology, 79, 1–15.

    Article  Google Scholar 

  28. Yen, H.-W., Chang, J.-T., & Chang, J.-S. (2015). The growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using mixture substrates of rice straw hydrolysate and crude glycerol. Biomass and Bioenergy, 80, 38–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also thank the Biomass and Bioenergy Research Infrastructure (BBRI)-LISBOA-01-0145-FEDER-022059, which is supported by the Operational Programme for Competitiveness and Internationalization (PORTUGAL2020), by the Lisbon Portugal Regional Operational Programme (Lisboa 2020), and by the North Portugal Regional Operational Programme (Norte 2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors thank Céu Penedo for HPLC support, Daniel Figueiredo for microscopic observations and Nile Red fluorescence microscopy support, Doctor Luísa Gouveia for the kind supply of the Tetradesmus obliquus ACOI 204/07 strain, Graça Gomes for the microalga maintenance, and Dr. Sérgio Marques (Sidul Company, Alhandra, Portugal) for the kind supply of the sugarcane molasses.

Funding

Carla Dias PhD scholarship is sponsored by Fundação para a Ciência e Tecnologia (FCT), Portugal (SFRH/BD/117355/2016). Beatriz P. Nobre thanks FCT for financial support of Centro de Química Estrutural through projects UIDB/00100/2020 and UIDP/00100/2020; and Institute of Molecular Sciences - Associate Laboratory through project LA/P/0056/2020. Beatriz P. Nobre thanks Instituto Superior Técnico and FCT for the Scientific Employment contract under Decree-Law no. 57/2016, of August 29.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Dias.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, C., Nobre, B., Santos, J.A.L. et al. Lipid and Carotenoid Production by a Rhodosporidium toruloides and Tetradesmus obliquus Mixed Culture Using Primary Brewery Wastewater Supplemented with Sugarcane Molasses and Urea. Appl Biochem Biotechnol 194, 5556–5579 (2022). https://doi.org/10.1007/s12010-022-04034-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04034-z

Keywords

Navigation