Skip to main content
Log in

Characterization of Cellulose-Degrading Bacteria Isolated from Soil and the Optimization of Their Culture Conditions for Cellulase Production

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5–6) and temperature (35–40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Danalache, F., Mata, P., Alves, VD., Moldão-Martins, M. (2018). Chapter 10: Enzyme-assisted extraction of fruit juices (In Rajauria G. Tiwari BK., ed.), Academic Press, pp. 183–200.

  2. Silalertruksa, T., & Gheewala, S. H. (2020). Competitive use of sugarcane for food, fuel, and biochemical through the environmental and economic factors. The International Journal of Life Cycle Assessment, 25, 1343–1355.

    Article  CAS  Google Scholar 

  3. Faria, SP., de Melo, GR., Cintra, LC., Ramos, LP., Amorim Jesuino, RS., Ulhoa, CJ., de Faria, FP. (2020). Production of cellulases and xylanases by Humicolagrisea var. thermoidea and application in sugarcane bagasse arabinoxylan hydrolysis. Industrial Crops and Products, 158, 112968.

  4. Sankaran, R., Parra Cruz, R. A., Pakalapati, H., Show, P. L., Ling, T. C., Chen, W. H., & Tao, Y. (2020). Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresource Technology, 298, 122476.

    Article  CAS  PubMed  Google Scholar 

  5. Paudel, P. Y., & Qin, W. (2015). Characterization of novel cellulase-producing bacteria isolated from rotting wood samples. Applied Biochemistry and Biotechnology, 177, 1186–1198.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar, VA., Kurup, RSC., Snishamol, C., Prabhu, GN. (2019). Role of cellulases in food, feed, and beverage industries (In Parameswaran B., Varjani S., & Raveendran S., ed.), Green Bioprocesses: Enzymes in Industrial Food Processing, Springer Singapore, pp. 323–343.

  7. Sampathkumar, K., Kumar, V., Sivamani, S., Sivakumar, N. (2019). An insight into fungal cellulases and their industrial applications (In Srivastava M., Srivastava N., Ramteke P.W., & Mishra P.K., ed.), Approaches to Enhance Industrial Production of Fungal Cellulases, Springer International Publishing, pp. 19–35.

  8. Soni, SK., Sharma, A., Soni, R. (2018). Cellulases: Role in lignocellulosic biomass utilization (In Lübeck M., ed.), Cellulases, Humana Press, New York, pp. 3–23.

  9. Singhania, RR., Adsul, M., Pandey, A., Patel, AK. (2017). Cellulases (In Pandey A., Negi S., Soccol C. R., ed.), Current developments in biotechnology and bioengineering-Production, isolation and purification of industrial products, Elsevier, pp. 73–101.

  10. Ramesh, A., Devi, PH., Chattopadhyay, S., Kavitha, M. (2020). Commercial applications of microbial enzymes (In Arora N.K., Mishra J., & Mishra V., ed.), Microbial enzymes: Roles and applications in industries, Springer Nature, pp. 137–184.

  11. Shida, Y., Furukawa, T., & Ogasawara, W. (2016). Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Bioscience, Biotechnology, and Biochemistry, 80, 1712–1729.

    Article  CAS  PubMed  Google Scholar 

  12. Bilal, M., & Iqbal, H. M. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector—current status and future trends. Critical Reviews in Food Science and Nutrition, 60, 2052–2066.

    Article  PubMed  Google Scholar 

  13. De Souza, T. S. P., & Kawaguti, H. Y. (2021). Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food and Bioprocess Technology, 14, 1446–1477.

    Article  Google Scholar 

  14. Cipolatti, EP., Cerqueira, PMCC., Henriques, RO., da Silva Pinto, JCC., de Castro, AM., Freire, DMG., Manoel, EA. (2019). Enzymes in green chemistry: The state of the art in chemical transformations (In Singh R.S., Singhania RR., Pandey A. Larroche C., ed.), Advances in Enzyme Technology. Elsevier, pp. 137–151.

  15. Guerrand, D. (2018). Economics of food and feed enzymes: Status and prospectives (In Nunes C. & Kumar V., ed.), Enzymes in Human and Animal Nutrition. Elsevier, pp. 487–514.

  16. Global Cellulase (CAS 9012–54–8) Market Growth 2021–2026 2021. Available from: https://www.360researchreports.com/global-cellulase-cas-9012-54-8-sales-market-16610450. Accessed October 30, 2020.

  17. Marques, N. P., de Cassia Pereira, J., Gomes, E., da Silva, R., Araújo, A. R., Ferreira, H., Rodrigues, A., Dussan, K. J., & Bocchini, D. A. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Industrial Crops and Products, 122, 66–75.

    Article  CAS  Google Scholar 

  18. Islam, F., & Roy, N. (2018). Screening, purification and characterization of cellulase from cellulose producing bacteria in molasses. BMC Research Notes, 11, 445–451.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maki, M. L., Broere, M., Leung, K. T., & Qin, W. (2011). Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. International Journal of Biochemistry and Molecular Biology, 2, 146–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cangelosi, G. A., Palermo, C. O., Laurent, J. P., Hamlin, A. M., & Brabant, W. H. (1999). Colony morphotypes on Congo red agar segregate along species and drug susceptibility lines in the Mycobacterium avium-intracellulare complex. Microbiology, 145, 1317–1324.

    Article  CAS  PubMed  Google Scholar 

  21. Mokale, KAL., Chio, C., Khatiwada, JR., Shrestha, S., Chen, X., Li, H., Zhu, Y., Jiang, Z-H., Xu, C. (C.), Qin, W. (2022). Characterization of glucose isomerase-producing bacteria and optimization of fermentation conditions for producing glucose isomerase using biomass. Green Chemical Engineering. https://doi.org/10.1016/j.gce.2022.05.003

  22. Cowan, ST. Steel, KJ. (2003). Manual for the identification of medical bacteria (G.I. Barrow and R.K.A., ed.), Cambridge University Press, pp. 188–238

  23. Rahman MS., Fernando S., Ross B., Wu J., Qin W. (2018). Endoglucanase (EG) activity assays (In: Lübeck M., ed.), Cellulases, Methods in Molecular Biology, Humana Press, New York.

  24. Scarcella, ASd. A., Pasin, T. M., de Oliveira, T. B., de Lucas, R. C., Ferreira-Nozawa, M. S., Freitas, E. N., & Polizeli, Md. LTd. M. (2021). Saccharification of different sugarcane bagasse varieties by enzymatic cocktails produced by Mycothermusthermophilus and Trichodermareesei RP698 cultures in agro-industrial residues. Energy, 226, 120360.

    Article  Google Scholar 

  25. Van Wyk, N., Navarro, D., Blaise, M., Berrin, J. G., Henrissat, B., Drancourt, M., & Kremer, L. (2017). Characterization of a mycobacterial cellulase and its impact on biofilm- and drug-induced cellulose production. Glycobiology, 27, 392–399.

    Article  PubMed  Google Scholar 

  26. Ye, M., Sun, L., Yang, R., Wang, Z., & Qi, K. Z. (2017). The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. Royal Society Open Science, 4, 171012.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Molina, G. C. E., de la Rosa, G., Gonzalez, C. J., Sánchez, Y., Castillo-Michel, H., Valdez-Vazquez, I., Balcazar, E., & Salmerón, I. (2018). Optimization of culture conditions for production of cellulase by Stenotrophomonas maltophilia. BioResources, 13, 8358–8372.

    Google Scholar 

  28. Tan, H., Miao, R., Liu, T., Yang, L., Yang, Y., Chen, C., Lei, J., Li, Y., He, J., Sun, Q., Peng, W., Gan, B., & Huang, Z. (2018). A bifunctional cellulase-xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microbial biotechnology, 11, 381–398.

    Article  CAS  PubMed  Google Scholar 

  29. Dai, J., Dong, A., Xiong, G., Liu, Y., Hossain, M. S., Liu, S., Gao, N., Li, S., Wang, J., & Qiu, D. (2020). Production of highly active extracellular amylase and cellulase from Bacillus subtilis ZIM3 and a recombinant strain with a potential application in tobacco fermentation. Frontiers in Microbiology, 11, 1539.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kumar, Anu, Kumar, S., Kumar, A., Kumar, V., & Singh, B. (2021). Optimization of cellulase production by Bacillus subtilis subsp. subtilis JJBS300 and biocatalytic potential in saccharification of alkaline-pretreated rice straw. Preparative Biochemistry & Biotechnology, 51, 697–704.

    Article  CAS  Google Scholar 

  31. Li, F., Xie, Y., Gao, X., Shan, M., Sun, C., Niu, Y. D., & Shan, A. (2020). Screening of cellulose degradation bacteria from min pigs and optimization of its cellulase production. Electronic Journal of Biotechnology, 48, 29–35.

    Article  CAS  Google Scholar 

  32. Sreena, C. P., & Sebastian, D. (2018). Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs. Journal of Genetic Engineering and Biotechnology, 16, 9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krishnaswamy, V. G., Sridharan, R., Kumar, P. S., & Fathima, M. J. (2022). Cellulase enzyme catalyst producing bacterial strains from vermico post and its application in low-density polyethylene degradation. Chemosphere, 288, 132552.

    Article  CAS  PubMed  Google Scholar 

  34. Pramanik, S. K., Mahmud, S., Paul, G. K., Jabin, T., Naher, K., Uddin, M. S., Zaman, S., & Saleh, M. A. (2020). Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase. Current Research in Microbial Sciences, 2, 100013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sinjaroonsak, S., Chaiyaso, T., & Kittikun, H. A. (2019). Optimization of cellulase and xylanase productions by Streptomyces thermocoprophilus strain TC13W using oil palm empty fruit bunch and tuna condensate as substrates. Applied Biochemistry and Biotechnology, 189, 76–86.

    Article  CAS  PubMed  Google Scholar 

  36. Ibrahim, A. M., Hamouda, R. A., El-Naggar, N. E. A., & Al-Shakankery, F. M. (2021). Bioprocess development for enhanced endoglucanase production by newly isolated bacteria, purification, characterization and in-vitro efficacy as anti-biofilm of Pseudomonas aeruginosa. Scientific Reports, 11, 9754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nkohla, A., Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., & Okoh, A. I. (2017). Endoglucanase and xylanase production by Chryseobacterium species isolated from decaying biomass. Polish Journal of Environmental Studies, 26, 2651–2660.

    Article  CAS  Google Scholar 

  38. Almuharef, I., Rahman, M. S. Q., & W. (2020). High production of cellulase by a newly isolated strain Paenibacillus sp. IM7. Waste and Biomass Valorization, 11, 6085–6094.

    Article  CAS  Google Scholar 

  39. Steiner, E., & Margesin, R. (2020). Production and partial characterization of a crude cold-active cellulase (CMCase) from Bacillus mycoides AR20-61 isolated from an Alpine forest site. Annals of Microbiology, 70, 67.

    Article  CAS  Google Scholar 

  40. Bhagat, S. A., & Kokitkar, S. S. (2021). Isolation and identification of bacteria with cellulose-degrading potential from soil and optimization of cellulase production. Journal of Applied Biology and Biotechnology, 9, 154–161.

    CAS  Google Scholar 

  41. Indumathi, T., Jayaraj, R., Kumar, P. S., Sonali, J. M. I., Krishnaswamy, V. G., Ghfar, A. A., & Govindaraju, S. (2022). Biological approach in deinking of waste paper using bacterial cellulase as an effective enzyme catalyst. Chemosphere, 287, 132088.

    Article  CAS  PubMed  Google Scholar 

  42. Ariffin, H. N., Abdullah, M. S., Umi Kalsom, Y., & Shirai Hassan, M. A. (2006). Production and characterisation of cellulase by Bacillus pumilus EB3. International Journal of Engineering & Technology, 3, 47–53.

    Google Scholar 

  43. Mmango-Kaseke, Z., Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., & Okoh, A. I. (2016). Optimization of cellulase and xylanase production by Micrococcus species under submerged fermentation. Sustainability, 8, 1168.

    Article  Google Scholar 

  44. Irfan, M., Tayyab, A., Hasan, F., Khan, S., Badshah, M., & Shah, A. A. (2017). Production and characterization of organic solvent-tolerant cellulase from bacillus amyloliquefaciens AK9 isolated from hot spring. Applied Biochemistry and Biotechnology, 182, 1390–1402.

    Article  CAS  PubMed  Google Scholar 

  45. Abada, E. A., Elbaz, R. M., Sonbol, H., & korany, SM. (2021). Optimization of cellulase production from Bacillus albus (MN755587) and its involvement in bioethanol production. Polish Journal of Environmental Studies, 30, 2459–2466.

    Article  CAS  Google Scholar 

  46. Molina Guerrero, C. E., de la Rosa, G., Gonzalez Castañeda, J., Sánchez, Y., Castillo-Michel, H., Valdez-Vazquez, I., Balcazar, E., & Salmerón, I. (2018). Optimization of culture conditions for production of cellulase by Stenotrophomonas maltophilia. BioResources, 13, 8358–8372.

    Article  Google Scholar 

  47. Potprommanee, L., Wang, X. Q., Han, Y. J., Nyobe, D., Peng, Y. P., Huang, Q., Liu, J. Y., Liao, Y. L., & Chang, K. L. (2017). Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulose producer on alkali pretreated of lignocellulosic biomass. PloS one, 12, e0175004.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Herrera, L. M., Braña, V., Franco, F. L., & Castro-Sowinski, S. (2019). Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiological Research, 223–225, 13–21.

    Article  PubMed  Google Scholar 

  49. Thapa, S., Mishra, J., Arora, N., Mishra, P., Li, H., & O′Hair, J., Bhatti, S., Zhou, S. (2020). Microbial cellulolytic enzymes: Diversity and biotechnology with reference to lignocellulosic biomass degradation. Reviews in Environmental Science and Bio/Technology, 19, 621–648.

    Article  CAS  Google Scholar 

  50. da Silva, R. N., Melo, LFd. A., & Luna Finkler, C. L. (2021). Optimization of the cultivation conditions of Bacillus Licheniformis BCLLNF-01 for cellulase production. Biotechnology Reports, 29, e00599.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Malik, W. A., & Javed, S. (2021). Biochemical characterization of cellulase from Bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass. Frontiers in bioengineering and biotechnology, 9, 800265.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hussain, A. A., Abdel-Salam, M. S., Abo-Ghalia, H. H., Hegazy, W. K., & Hafez, S. S. (2017). Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. Journal of Genetic Engineering and Biotechnology, 15, 77–85.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sharma, H. K., Xu, C. C., & Qin, W. (2020). Co-culturing of novel bacillus species isolated from municipal sludge and gut of red wiggler worm for improving CMCase activity. Waste and Biomass Valorization, 11, 2047–2058.

    Article  CAS  Google Scholar 

  54. Kazeem, M. O., Shah, U. K. M., Baharuddin, A. S., & Rahman, N. A. (2016). Enhanced cellulase production by a novel thermophilic Bacillus licheniformis 2D55: Characterization and application in lignocellulosic saccharification. BioResources, 11, 5404–5423.

    Article  CAS  Google Scholar 

  55. Ahmad, T., Sharma, A., Gupta, G., Mansoor, S., Jan, S., Kaur, B., Paray, B. A., & Ahmad, A. (2020). Response surface optimization of cellulase production from Aneurinibacillus aneurinilyticus BKT-9: An isolate of urban Himalayan freshwater. Saudi Journal of Biological Sciences, 27, 2333–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paulraj Gundupalli, M., Sahithi, S. T. A., Cheng, Y. S., Tantayotai, P., & Sriariyanun, M. (2021). Differential effects of inorganic salts on cellulase kinetics in enzymatic saccharification of cellulose and lignocellulosic biomass. Bioprocess and Biosystems Engineering, 44, 2331–2344.

    Article  CAS  PubMed  Google Scholar 

  57. Sharma, A., Tewari, R., & Soni, S. (2015). Application of statistical approach for optimizing CMCase production by Bacillus tequilensis S28 strain via submerged fermentation using wheat bran as carbon source. World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering, 9, 76–86.

    Google Scholar 

  58. Tabssum, F., Irfan, M., Shakir, H. A., & Qazi, J. I. (2018). RSM based optimization of nutritional conditions for cellulase mediated saccharification by Bacillus cereus. Journal of biological engineering, 12, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pham, V. H. T., Kim, J., Shim, J., Chang, S., & Chung, W. (2022). Coconut mesocarp-based lignocellulosic waste as a substrate for cellulase production from high promising multienzyme-producing Bacillus amyloliquefaciens FW2 without pretreatments. Microorganisms, 10, 327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhagia, S., Wyman, C. E., & Kumar, R. (2019). Impacts of cellulase deactivation at the moving air-liquid interface on cellulose conversions at low enzyme loadings. Biotechnology for Biofuels and Bioproducts, 12, 96.

    Article  Google Scholar 

  61. Sriariyanun, M., Tantayotai, P., Yasurin, P., Pornwongthong, P., & Cheenkachorn, K. (2016). Production, purification and characterization of an ionic liquid tolerant cellulase from Bacillus sp. isolated from rice paddy field soil. Electronic Journal of Biotechnology, 19, 23–28.

    Article  Google Scholar 

  62. Barbosa, K. L., Malta, V. R. D. S., Machado, S. S., Leal Junior, G. A., da Silva, A. P. V., da Almeida, R. M. R. G., & Luz, J. M. R. (2020). Bacterial cellulase from the intestinal tract of the sugarcane borer. International Journal of Biological Macromolecules, 161, 441–448.

    Article  CAS  PubMed  Google Scholar 

  63. Mafa, M. S., Pletschke, B. I. M., & S. (2021). Defining the frontiers of synergism between cellulolytic enzymes for improved hydrolysis of lignocellulosic feedstocks. Catalysts, 11, 1343.

    Article  CAS  Google Scholar 

  64. Shankar, T., Sankaralingam, S., Balachandran, C., Chinnathambi, A., Nasif, O., Alharbi, S. A., Park, S., & Baskar, K. (2021). Purifcation and characterization of carboxymethylcellulase from Bacillus pumilus EWBCM1 isolated from earthworm gut (Eudrilus eugeniae). Journal of King Saud University - Science, 33, 1–8.

    Article  Google Scholar 

  65. Van Dyk, J. S., Sakka, M., Sakka, K., & Pletschke, B. I. (2009). The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme and Microbial Technology, 45, 372–378.

    Article  Google Scholar 

  66. Qiao, J., Dong, B., Li, Y., Zhang, B., & Cao, Y. (2009). Cloning of a beta-1,3–1,4-glucanase gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli. Applied Biochemistry and Biotechnology, 152, 334–342.

    Article  CAS  PubMed  Google Scholar 

  67. Morozova, V. V., Gusakov, A. V., Andrianov, R. M., Pravilnikov, A. G., Osipov, D. O., & Sinitsyn, A. P. (2010). Cellulases of Penicillium verruculosum. Biotechnology Journal, 5, 871–880.

    Article  CAS  PubMed  Google Scholar 

  68. Goswami, K., Deka Boruah, H. P., & Saikia, R. (2022). Purification and characterization of cellulase produced by Novosphingobium sp. Cm1 and its waste hydrolysis efficiency and bio-stoning potential. Journal of Applied Microbiology, 132, 3618–3628.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science and Engineering Research Council of Canada (NSERC) via the Discovery Program.

Funding

This project was supported by the Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN- 2017- 05366) to WQ.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WQ, CX, ZHJ, and ALMK; methodology, ALMK and CC; validation, WQ, CX, ZHJ, and ALMK; formal analysis, ALMK and JRK; investigation, ALMK; resources, WQ, CX, ZHJ, and ALMK; data curation, ALMK; software, ALMK; writing—original draft, ALMK; writing—review and editing, ALMK, SS, XC, SH, HL, WQ, CX, and ZHJ; supervision, WQ, CX, and ZHJ; project administration, WQ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wensheng Qin.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors agreed to participate in this work.

Consent for Publication

The authors agreed to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 275 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokale Kognou, A.L., Chio, C., Khatiwada, J.R. et al. Characterization of Cellulose-Degrading Bacteria Isolated from Soil and the Optimization of Their Culture Conditions for Cellulase Production. Appl Biochem Biotechnol 194, 5060–5082 (2022). https://doi.org/10.1007/s12010-022-04002-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04002-7

Keywords

Navigation