Skip to main content
Log in

Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A cellulase-producing bacterium, designated as strain AK9, was isolated from a hot spring of Tatta Pani, Azad Kashmir, Pakistan. The bacterium was identified as Bacillus amyloliquefaciens through 16S rRNA sequencing. Cellulase from strain AK9 was able to liberate glucose from soluble cellulose and carboxymethyl cellulose (CMC). Enzyme was purified through size exclusion chromatography and a single band of ∼47 kDa was observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified with recovery of 35.5%, 3.6-fold purity with specific activity of 31 U mg−1. The purified cellulase retained its activity over a wide range of temperature (50–70 °C) and pH (3–7) with maximum stability at 60 °C and pH 5.0. The activity inhibited by ethylenediaminetetraacetic acid (EDTA), suggested that it was metalloenzyme. Diethyl pyrocarbonate (DEPC) and β-mercaptoethanol significantly inhibited cellulase activity that revealed the essentiality of histidine residues and disulfide bonds for its catalytic function. It was stable in non-ionic surfactants, in the presence of various metal ions, and in water-insoluble organic solvents. Approximately 9.1% of reducing sugar was released after enzymatic saccharification of DAP-pretreated agro-residue, compared to a very low percentage by autohydrolysis treatment. Hence, it is concluded that cellulase from B. amyloliquefaciens AK9 can potentially be used in bioconversion of lignocellulosic biomass to fermentable sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patagundi, B. I., Shivasharan, C. T., & Kaliwal, B. B. (2014). Isolation and characterization of cellulase producing bacteria from soil. International Journal of Current Microbiology and Applied Sciences, 3, 59–69.

    Google Scholar 

  2. Zhang, G., Li, S., Xue, Y., Mao, L., & Ma, Y. (2012). Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles, 16, 35–43.

    Article  CAS  Google Scholar 

  3. Acharya, S., & Chaudhary, A. (2012). Alkaline cellulase produced by a newly isolated thermophilic Aneurinibacillus thermoaerophilus WBS2 from hot spring, India. African Journal Microbiology Research, 6, 5453–5458.

    CAS  Google Scholar 

  4. Kazue, T., Okuno, M., Furumoto, M., & Watanabe, H. (2006). Biomineralization of pisoliths in hot springs. Materials Science and Engineering, 26, 617–623.

    Article  Google Scholar 

  5. Abdel-Fattah, Y. R., El-Helow, E. R., Ghanem, K. M., & Lotfy, W. A. (2007). Application of factorial designs for optimization of avicelase production by a thermophilic Geobacillus isolate. Research Journal of Microbiology, 2, 13–23.

    Article  CAS  Google Scholar 

  6. Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I., Lee, N. K., & Chung, C. H. (2008). Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99, 378–386.

    Article  CAS  Google Scholar 

  7. Rastogi, G., Muppidi, G. L., Gurram, R. N., Adhikari, A., Bischoff, K. M., & Hughes, S. R. (2009). Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. Journal of Industrial Microbiology & Biotechnology, 36, 585–598.

    Article  CAS  Google Scholar 

  8. Jaradat, Z., Dawagreh, A., Ababneh, Q., & Saadoun, I. (2008). Influence of culture conditions on cellulase production by Streptomyces sp. (Strain J2). Jordan Journal Biological, Sciences, 1, 141–146.

    Google Scholar 

  9. Shah, A. A., Eguchi, T., Mayumi, D., Kato, S., Shintani, N., & Kamini, N. R. (2013). Purification and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polymer Degradation and Stability, 98, 609–618.

    Article  CAS  Google Scholar 

  10. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  11. Lowry, O. H., Roserough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 93, 265–275.

    Google Scholar 

  12. Ariffin, H., Abdullah, N., Umi, K., Shirai, Y., & Hassan, M. A. (2006). Production and characterization by Bacillus pumilus EB3. International Journal Engineering Technology, 3, 47–53.

    Google Scholar 

  13. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  14. Steel, R., Torrie, J., & Dickey, D. (1996). Principles and procedures of statistics: a biometrical approach (3rd ed.). New York: Pub: McGraw Hill Book Co Inc..

    Google Scholar 

  15. Zar, J. H. (1974). Biostatistical analysis (p. 620). Prentice Hall: Pub: Englewood Cliffs.

    Google Scholar 

  16. Meng, F., Ma, L., Ji, S., Yang, W., & Cao, B. (2014). Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Letters in Applied Microbiology, 59, 306–312.

    Article  CAS  Google Scholar 

  17. Rawat, R., & Tewari, L. (2012). Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3. Extremophiles, 16, 637–644.

    Article  CAS  Google Scholar 

  18. Yassien, M. A. M., Jiman-Fatani, A. A. M., & Asfour, H. Z. (2014). Production, purification and characterization of cellulase from Streptomyces sp. African Journal Micrbiology Research, 8, 348–354.

    Article  Google Scholar 

  19. El-Sersy, N. A., Abd-Elnaby, H., Abou-Elela, G. M., Ibrahim, H. A. H., & Toukhy, N. M. (2010). Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber. African Journal Biotechnology, 9, 6355–6364.

    CAS  Google Scholar 

  20. Da Vinha, F. N. M., Gravina-Oliveira, M. P., Franco, M. N., Macrae, A., Da Silva Bon, E. P., & Nascimento, R. P. (2011). Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Applied Biochemistry and Biotechnology, 164, 256–267.

    Article  Google Scholar 

  21. Akbar, S., Hasan, F., Nadhman, A., Khan, S., & Shah, A. A. (2013). Production and purification of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) degrading enzyme from Streptomyces sp. AF-111. Journal of Polymers and the Environment, 21, 1109–1116.

    Article  CAS  Google Scholar 

  22. Vijayaraghavan, P., & Vincent, S. G. P. (2012). Purification and characterization of carboxymethyl cellulase from Bacillus sp. isolated from a paddy field. Polish Journal Microbiology, 61, 51–55.

    CAS  Google Scholar 

  23. Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K. M., Hughes, S. R., & Christopher, L. P. (2010). Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology, 101, 8798–8806.

    Article  CAS  Google Scholar 

  24. Asha, M. B., Revathi, M., Yadav, A., & Sakthivel, N. (2012). Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. Journal of Microbiology and Biotechnology, 22, 1501–1509.

    Article  CAS  Google Scholar 

  25. Ogawa, A., Suzumatsu, A., Takizawa, S., Kubota, H., Sawada, K., & Hakamada, Y. (2007). Endoglucanase from Paenibacillus spp. from a new clan in glycoside hydrolase family 5. Journal of Biotechnology, 129, 406–414.

    Article  CAS  Google Scholar 

  26. Han, S. J., Yoo, Y. J., & Kang, H. S. (1995). Characterization of bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo and endoglucanase activity. The Journal of Biological Chemistry, 270, 26012–26019.

    Article  CAS  Google Scholar 

  27. Kim, C. H. (1995). Characterization and substrate specificity of an endo-β-1,4-D-glucanase I (avicelase) from an extracellular multienzyme complex of Bacillus circulans. Applied and Environmental Microbiology, 61, 959–965.

    CAS  Google Scholar 

  28. Annamalai, N., Rajeswari, M. V., Elayaraja, S., & Balasubramanian, T. (2013). Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydrate Polymers, 94, 409–415.

    Article  CAS  Google Scholar 

  29. Zaks, A., & Klibanov, A. M. (1988). Enzymatic catalysis in nonaqueous solvents. The Journal of Biological Chemistry, 263, 3194–3201.

    CAS  Google Scholar 

  30. Gaur, R., & Tiwar, S. (2015). Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnology, 15, 19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamer Ali Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Tayyab, A., Hasan, F. et al. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring. Appl Biochem Biotechnol 182, 1390–1402 (2017). https://doi.org/10.1007/s12010-017-2405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2405-8

Keywords

Navigation