Skip to main content
Log in

Highly Sensitive Enzymatic Biosensor Based on Polyaniline-Wrapped Titanium Dioxide Nanohybrid for Fish Freshness Detection

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Herein, we envisage the fabrication of a highly sensitive enzymatic electrochemical biosensor for selective detection of xanthine (Xn) using xanthine oxidase (XOs) immobilized polyaniline-wrapped titanium dioxide (PANI@TiO2) nanohybrid as a sensing platform. The PANI@TiO2 nanohybrid was synthesized via chemical polymerization using ammonium per sulfate as an oxidant. Various microscopic, spectroscopic, and electrochemical techniques have been utilized to confirm the electrophoretic deposition of the PANI and PANI@TiO2 nanohybrids on to indium tin oxide (ITO) coated glass substrate. The fabricated XOs/PANI@TiO2/ITO electrode exhibits enhanced electron transfer kinetics with an electron transfer rate constant of 0.904 cm s−1. The electrochemical results show that the fabricated biosensor can detect Xn in the concentration range 1–100 µM, with a limit of detection of 0.1 µM (S/N = 3) and a response time of 10 s. The validation of the biosensors has been conducted using real samples obtained from the rohu (Labeo rohita) fish. The proposed biosensor can be a reliable analytical tool for determining Xn concentration in commercial fish and meat samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

MWCNT:

Multiwalled carbon nanotubes

XO:

Xanthine oxidase

CaCO3 :

Calcium carbonate

GCE:

Glassy carbon electrode

Ag:

Silver

ZnO:

Zinc oxide

poly-TTCA:

Poly-5,2′:5′,2″-terthiophine-3-carboxylic acid

Au:

Gold

TiO2 :

Titanium dioxide

ITO:

Indium tin oxide

DPV:

Differential pulse voltammetry

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

References

  1. Kamil Reza, K., Singh, M. K., Yadav, S. K., Singh, J., Agrawal, V. V., & Malhotra, B. D. (2013). Quantum dots based platform for application to fish freshness biosensor. Sensors and Actuators B: Chemical, 177, 627–633.

    Article  CAS  Google Scholar 

  2. Sahyar, B. Y., Kaplan, M., Ozsoz, M., Celik, E., & Otles, S. (2019). Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry, 130, 107327.

    Article  CAS  Google Scholar 

  3. Devi, R., Yadav, S., & Pundir, C. S. (2011). Electrochemical detection of xanthine in fish meat by xanthine oxidase immobilized on carboxylated multiwalled carbon nanotubes/polyaniline composite film. Biochemical Engineering Journal, 58–59, 148–153.

    Article  CAS  Google Scholar 

  4. Albelda, J. A. V., Uzunoglu, A., Santos, G. N. C., & Stanciu, L. A. (2017). Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosensors and Bioelectronics, 89, 518–524.

  5. Lawal, A. T., & Adeloju, S. B. (2009). Comparison of enzyme immobilisation methods for potentiometric phosphate biosensors. Biosensors and Bioelectronics, 25, 406–410.

    Article  CAS  Google Scholar 

  6. Ghanbari, K., & Nejabati, F. (2020). Ternary nanocomposite-based reduced graphene oxide/chitosan/Cr2O3 for the simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat. Analytical Methods, 12, 1650–1661.

    Article  CAS  Google Scholar 

  7. Jalil, O., Pandey, C. M., & Kumar, D. (2020). Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchimica Acta, 187, 275.

    Article  CAS  Google Scholar 

  8. Yadav, S. K., Singh, J., Agrawal, V. V., & Malhotra, B. D. (2012). Nanostructured nickel oxide film for application to fish freshness biosensor. Applied Physics Letters, 101, 023703.

  9. Solanki, S., Pandey, C. M., Gupta, R. K., & Malhotra, B. D. (2020). Emerging trends in microfluidics based devices. Biotechnology Journal, 15, 1900279.

    Article  CAS  Google Scholar 

  10. Xue, G., Yu, W., Yutong, L., Qiang, Z., Xiuying, L., Yiwei, T., & Jianrong, L. (2019). Construction of a novel xanthine biosensor using zinc oxide (ZnO) and the biotemplate method for detection of fish freshness. Analytical Methods, 11, 1021–1026.

    Article  CAS  Google Scholar 

  11. Gerard, M., Chaubey, A., & Malhotra, B. D. (2002). Application of conducting polymers to biosensors. Biosensors & Bioelectronics, 17, 345–359.

    Article  CAS  Google Scholar 

  12. Kumar, A. S., & Shanmugam, R. (2011). Simple method for simultaneous detection of uric acid, xanthine and hypoxanthine in fish samples using a glassy carbon electrode modified with as commercially received multiwalled carbon nanotubes. Analytical Methods, 3, 2088–2094.

    Article  CAS  Google Scholar 

  13. Pundir, C. S., & Devi, R. (2014). Biosensing methods for xanthine determination: A review. Enzyme and Microbial Technology, 57, 55–62.

    Article  CAS  Google Scholar 

  14. Dhand, C., Das, M., Datta, M., & Malhotra, B. D. (2011). Recent advances in polyaniline based biosensors. Biosensors & Bioelectronics, 26, 2811–2821.

    Article  CAS  Google Scholar 

  15. Ahuja, T., Mir, I. A., Kumar, D., & Rajesh. (2007). Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials, 28, 791–805.

    Article  CAS  Google Scholar 

  16. Soni, A., Pandey, C. M., Pandey, M. K., & Sumana, G. (2019). Highly efficient polyaniline-MoS2 hybrid nanostructures based biosensor for cancer biomarker detection. Analytica Chimica Acta, 1055, 26–35.

    Article  CAS  Google Scholar 

  17. Solanki, P., Kaushik, A., Agrawal, V., & Malhotra, B. (2011). Nanostructured metal oxide-based biosensors. NPG Asia Materials, 3, 17–24.

    Article  Google Scholar 

  18. Jalil, O., Pandey, C. M., & Kumar, D. (2021). Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry, 138, 107733.

    Article  CAS  Google Scholar 

  19. Verma, R., Samdarshi, S. K., Sagar, K., & Konwar, B. K. (2017). Nanostructured bi-phasic TiO2 nanoparticles grown on reduced graphene oxide with high visible light photocatalytic detoxification. Materials Chemistry and Physics, 186, 202–211.

    Article  CAS  Google Scholar 

  20. Teli, S. B., Molina, S., Sotto, A., Calvo, E. G., & Abajob, J. D. (2013). Fouling resistant polysulfone–PANI/TiO2 ultrafiltration nanocomposite membranes. Industrial & Engineering Chemistry Research, 52, 9470–9479.

    Article  CAS  Google Scholar 

  21. Xie, S., Gan, M., Ma, L., Li, Z., Yan, J., Yin, H., Shen, X., Xu, F., Zheng, J., Zhang, J., & Hu, J. (2014). Synthesis of polyaniline-titania nanotube arrays hybrid composite via self-assembling and graft polymerization for supercapacitor application. Electrochimica Acta, 120, 408–415.

    Article  CAS  Google Scholar 

  22. Soni, A., Pandey, C. M., Solanki, S., Kotnala, R. K., & Sumana, G. (2018). Electrochemical genosensor based on template assisted synthesized polyaniline nanotubes for chronic myelogenous leukemia detection. Talanta, 187, 379–389.

    Article  CAS  Google Scholar 

  23. Katoch, A., Burkhart, M., Hwang, T., & Kim, S. S. (2012). Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol–gel chemical method. Chemical Engineering Journal, 192, 262–268.

    Article  CAS  Google Scholar 

  24. Rab, N., Chong, F. K., Mohamed, H. I., & Lim, W. H. (2018). Preparation of TiO2 nanoparticles by hydrolysis of TiCl4 using water and glycerol solvent system. Journal of Physics: Conference Series, 1123, 012065.

    Google Scholar 

  25. Paul, G., Verma, S., Jalil, O., Thakur, D., Pandey, C. M., & Kumar, D. (2021). PEDOT: PSS-grafted graphene oxide-titanium dioxide nanohybrid-based conducting paper for glucose detection. Polymers for Advanced Technologies, 32, 1774–1782.

    Article  CAS  Google Scholar 

  26. Elakkiya, S., Arthanareeswaran, G., Ismail, A. F., Das, D. B., & Suganya, R. (2019). Polyaniline coated sulfonated TiO2 nanoparticles for effective application in proton conductive polymer membrane fuel cell. European Polymer Journal, 112, 696–703.

    Article  CAS  Google Scholar 

  27. Yu, H., Jang, K., Chung, I., & Ahn, H. (2016). Fabrication and electrochemical characterization of polyaniline/titanium oxide nanoweb composite electrode for supercapacitor application. Journal of Nanoscience and Nanotechnology, 16, 2937–2943.

    Article  CAS  Google Scholar 

  28. Najafi, V., Ahmadi, E., Ziaee, F., Omidian, H., & Sedaghat, H. (2019). Polyaniline-modified TiO2, a highly effective photo-catalyst for solid-phase photocatalytic degradation of PVC. Journal of Polymers and the Environment, 27, 784–793.

  29. Ahmad, R., & Mondal, P. K. (2012). Adsorption and photodegradation of methylene blue by esing PANI/TiO2 nanocomposite. Journal of Dispersion Science and Technology, 33, 380–386.

  30. Emran, K. (2018). The electrocatalytic activity of polyaniline/TiO2 nanocomposite for Congo red degradation in Aqueous solutions. International Journal of Electrochemical Science, 13, 5085–5095.

  31. Abaci, S., Nessark, B., & Riahi, F. (2014). Preparation and characterization of polyaniline+TiO2 composite films. Ionics, 20, 1693–1702.

    Article  CAS  Google Scholar 

  32. Reddy, R., kv, K., S B, B., Soni, S., Jeong, H. M., and Anjanapura, R. (2016). Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron, 120, 169–174.

  33. Majumdar, S., & Mahanta, D. (2020). Deposition of an ultra-thin polyaniline coating on a TiO2 surface by vapor phase polymerization for electrochemical glucose sensing and photocatalytic degradation. RSC Advances, 10, 17387–17395.

    Article  CAS  Google Scholar 

  34. Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A Practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95, 197–206.

    Article  CAS  Google Scholar 

  35. Pandey, C. M., Sumana, G., & Tiwari, I. (2014). Copper oxide assisted cysteine hierarchical structures for immunosensor application. Applied Physics Letters, 105, 103706.

    Article  Google Scholar 

  36. Dolmacı, N., Çete, S., Arslan, F., & Yaşar, A. (2012). An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film. Artificial Cells, Blood Substitutes, and Biotechnology, 40, 275–279.

    Article  Google Scholar 

  37. Narang, J., Malhotra, N., Singhal, C., Singh, M., & Pundir, C. (2016). Impedimetric and voltammetry sensing of xanthine using nanocomposites. Advanced Materials Letters, 7, 555–560.

    Article  CAS  Google Scholar 

  38. Yazdanparast, S., Benvidi, A., Abbasi, S., & Rezaeinasab, M. (2019). Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker. Microchemical Journal, 149, 104000.

    Article  CAS  Google Scholar 

  39. Arslan, F., Yaşar, A., & Kiliç, E. (2006). An amperometric biosensor for xanthine determination prepared from xanthine oxidase immobilized in polypyrrole film. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 34, 111–126.

    PubMed  Google Scholar 

  40. Mathew, M. R., & Girish Kumar, K. (2020). Poly(amino hydroxy naphthalene sulphonic acid) modified glassy carbon electrode; an effective sensing platform for the simultaneous determination of xanthine and hypoxanthine. Journal of The Electrochemical Society, 167, 047519.

    Article  CAS  Google Scholar 

  41. Shan, D., Wang, Y., Xue, H., & Cosnier, S. (2009). Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. Sensors and Actuators B: Chemical, 136, 510–515.

    Article  CAS  Google Scholar 

  42. Sahyar, B., Kaplan, M., Ozsoz, M., Celik, E., & Otles, S. (2019). Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry, 130, 107327.

    Article  CAS  Google Scholar 

  43. Albelda, J. A. V., Uzunoglu, A., Santos, G. N. C., & Stanciu, L. A. (2017). Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosensors and Bioelectronics, 89, 518–524.

    Article  CAS  Google Scholar 

  44. Rahman, M. A., Won, M.-S., & Shim, Y.-B. (2007). Xanthine sensors based on anodic and cathodic detection of enzymatically generated hydrogen peroxide. Electroanalysis, 19, 631–637.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Deeksha acknowledges DST-INSPIRE for the SRF Award. C.M. Pandey acknowledges the Department of Science and Technology (DST), New Delhi, India for the DST-INSPIRE Faculty award.

Author information

Authors and Affiliations

Authors

Contributions

Deeksha: conceptualization, methodology, data curation, formal analysis, writing—original draft. CMP: supervision, investigation, validation, writing—review and editing, funding acquisition. DK: supervision, validation, project administration, writing—review and editing.

Corresponding authors

Correspondence to Chandra Mouli Pandey or D. Kumar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 90.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, D., Pandey, C.M. & Kumar, D. Highly Sensitive Enzymatic Biosensor Based on Polyaniline-Wrapped Titanium Dioxide Nanohybrid for Fish Freshness Detection. Appl Biochem Biotechnol 194, 3765–3778 (2022). https://doi.org/10.1007/s12010-022-03931-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03931-7

Keywords

Navigation