Skip to main content
Log in

Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A novel nonenzymatic voltammetric Xanthine biosensor was constructed based on a three-dimensional porous nanocomposite of reduced graphene oxide/polypyrrole/CdO nanocomposite modified glassy carbon electrode (GCE/rGO/PPy/CdO) for measuring of Xanthine. The structure and morphology of rGO/PPy/CdO nanocomposites were characterized by field emission scanning microscopy, Raman spectroscopy, X-ray diffraction, UV–vis spectroscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. The GCE/rGO/PPy/CdO based biosensor exhibited excellent electrocatalytic activity and high stability for Xanthine oxidation. Under optimized conditions, the linearity between the current response and the Xanthine concentration was obtained in the range of 1–800 µM with a detection limit of 0.11 μM (S/N = 3). The biosensor was used to determine the Xanthine in fish meat with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Zhang, J. Dong, X. Qian, Ch Zhao, One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sensors Actuators B 221, 528–536 (2015)

    Article  CAS  Google Scholar 

  2. N. Cooper, R. Khosravan, C. Erdmann, J. Fiene, J.W. Lee, Quantification of uricacid, xanthine and hypoxanthine in human serum by HPLC for pharmacody-namic studies. J. Chromatogr. B 837, 1–10 (2006)

    Article  CAS  Google Scholar 

  3. R. Parker, W. Snedden, R.W.E. Watts, Mass-spectrometric identification of hypoxanthine and xanthine (oxypurines) in skeletal muscle from two patients with congenital xanthine oxidase deficiency (xanthinuria). Biochem. J. 115, 103–108 (1969)

    Article  CAS  PubMed Central  Google Scholar 

  4. Z.K. Shihabi, M.E. Hinsdale, A.J. Bleyer, Xanthine analysis in biological fluids by capillary electrophoresis. J. Chromatogr. B 669, 163–169 (1995)

    Article  CAS  Google Scholar 

  5. V.K. Gupta, H. Karimi-Maleh, R. Sadegh, Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 10, 303–316 (2015)

    Google Scholar 

  6. G. Kh, S. Bonyadi, An electrochemical sensor based on reducedgraphene oxide decorated with polypyrrolenanofibers and zinc oxide–copper oxide p–n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan. New J. Chem. 42, 8512–8523 (2018)

    Article  Google Scholar 

  7. M. Raicopol, A. Prună, C. Damian, L. Pilan, Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Res. Lett. 8, 316–323 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H. Ahmad, A.A. Jasim, M.J. Faruki, M.S. Rahman, K. Thambiratnam, Poly (N-vinylcarbazole)-polypyrrole/graphene oxide nanocomposites based microfiber interferometer for high stability temperature sensor. Sensors Actuators B 263, 44–53 (2017)

    Article  CAS  Google Scholar 

  9. K. Naka, H. Itoh, S. Park, Y. Chujo, Synthesis of nanocomposites of metal nanoparticles utilizing miscible polymers. Polym. Bull. 52, 171–176 (2004)

    Article  CAS  Google Scholar 

  10. H. Huang, Q. Yuan, X. Yang, Preparation and characterization of metal-chitosan nanocomposites. Colloid Surf. B 39, 31–37 (2004)

    Article  CAS  Google Scholar 

  11. C.H. Bhosale, A.V. Kambale, A.V. Kokate, K.Y. Rajpure, Structural, optical and electrical properties of chemically sprayed CdO thin films. Mater. Sci. Eng. B 122, 67–71 (2005)

    Article  CAS  Google Scholar 

  12. N. Butwong, L. Zhou, W. Ng-eontae, R. Burakham, E. Moore, S. Srijaranai, J.H.T. Luong, J.D. Glennon, A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. J. Electroanal. Chem. 717–718, 41–46 (2014)

    Article  CAS  Google Scholar 

  13. K.B. Ravi, R. Gone, P.K. Giri, On the origin and tunability of blue and green photoluminescence from chemically derived graphene: hydrogenation and oxygenation studies. Carbon 95, 228–238 (2015)

    Article  CAS  Google Scholar 

  14. Y. Liu, Y. Ma, S. Guang, F. Ke, H. Xu, Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon 83, 79–89 (2015)

    Article  CAS  Google Scholar 

  15. P. Atri, D.C. Tiwari, R. Sharma, Synthesis of reduced graphene oxide nanoscrolls embedded in polypyrrole matrix for supercapacitor applications. Synth. Met. 227, 21–28 (2017)

    Article  CAS  Google Scholar 

  16. Y. Liu, E. Zhu, L. Bian, J. Hai, J. Tang, W. Tang, Robust graphene dispersion with amphiphlic perylene-polyglycidol. Mater Lett. 118, 188–191 (2014)

    Article  CAS  Google Scholar 

  17. S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation. J. Photochem. Photobiol. B 159, 111–119 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. P. Moozarm, N.W. PeiMeng, F. Lorestani, M.R. Mahmoudian, Y.Alias, Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sensors Actuators B 209, 100–108 (2015)

    Article  CAS  Google Scholar 

  19. H. Mirzazadeh, M. Lashanizadegan, Improving the catalytic activity of magnetic Fe3O4/ZnO–CdO/reduced graphene oxide for ultrasonic degradation of the organic pollutants and the green oxidation of olefins. Solid State Sci. 79, 48–57 (2018)

    Article  CAS  Google Scholar 

  20. S. Pourhashem, E. Ghasemy, A. Rashidi, M.R. Vaezi, Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots. J. Alloys Compd. 731, 1112–1118 (2018)

    Article  CAS  Google Scholar 

  21. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. J. Li, G. Xiao, C. Chen, R. Li, D. Yan, Superior dispersions of reduced graphene oxide synthesized by gallic acid as a reductant and stabilizer. J. Mater. Chem. A 1, 1481–1487 (2013)

    Article  CAS  Google Scholar 

  23. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  24. X. Fan, Zh Yang, N. He, Hierarchical nanostructured polypyrrole/graphene composites as supercapacitor electrode. RSC Adv. 5, 15096–15102 (2015)

    Article  CAS  Google Scholar 

  25. G. Murugadoss, R. Jayavel, R. Thangamuthu, M.R. Kumar, PbO/CdO/ZnO and PbS/CdS/ZnS nanocomposites: studies on optical, electrochemical and thermal properties. J. Lumin. 170, 78–89 (2016)

    Article  CAS  Google Scholar 

  26. X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochim. Acta 80, 346–353 (2012)

    Article  CAS  Google Scholar 

  27. M. Dekker, in Laboratory Techniques in Electroanalytical Chemistry, ed. by P.T. Kissinger, W.R. Heineman (New York: Marcel Dekker, 1984), p. 82

  28. N.F. Atta, M.F. El-Kady, A. Galal, Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sensors Actuators B 141, 566–574 (2009)

    Article  CAS  Google Scholar 

  29. J.J. Gooding, V.G. Praig, E.A. Hall, Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal. Chem. 70, 2396–2402 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon nanofiber-based glucose biosensor. Anal. Chem. 78, 5538–5542 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. R. Devi, B. Batra, S. Lata, S. Yadav, C.S. Pundir, A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process. Biochem. 48, 242–249 (2013)

    Article  CAS  Google Scholar 

  32. B. Dalkiran, C. Kacar, P.E. Erden, E. Kilic, Amperometric xanthine biosensors based on chitosan Co3O4 multiwalled carbon nanotube modified glassy carbon electrode. Sensors Actuators B 200, 83–91 (2014)

    Article  CAS  Google Scholar 

  33. N. Dimcheva, E. Horozova, Z. Jordanova, An amperometric xanthine oxidase enzyme electrode based on hydrogen peroxide electroreduction. Z. Naturforsch C. 57, 883–889 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. S. Sadeghi, E. Fooladi, M. Malekaneh, A nanocomposite/crude extract enzyme-based xanthine biosensor. Anal. Biochem. 464, 51–59 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. F. Öztürk, P.E. Erden, C. Kaçar, E. Kiliç, Amperometric biosensor for xanthine determination based on Fe3O4 nanoparticles. Acta Chim. Slov. 61, 19–26 (2014)

    PubMed  Google Scholar 

  36. R. Devi, M. Thakur, C.S. Pundir, Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens. Bioelectron. 26, 3420–3426 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. S. Çevik, Xanthine biosensor based on XO/AuNP/PtNP/MWCNT hybrid nanocomposite modified GCPE. Biotechnol. Bioprocess Eng. 21, 314–320 (2016)

    Article  CAS  Google Scholar 

  38. M. Dervisevic, E. Custiuc, E. Çevik, Z. Durmus, M. Şenel, A. Durmus, Electrochemical biosensor based on REGO/Fe3O4 bionanocomposite interface for xanthine detection in fish sample. Food Control 57, 402–410 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge partial financial support from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Ghanbari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 343 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, K., Nejabati, F. Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection. Food Measure 13, 1411–1422 (2019). https://doi.org/10.1007/s11694-019-00057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00057-z

Keywords

Navigation