Skip to main content
Log in

Preparation and characterization of polyaniline+TiO2 composite films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, we have prepared electrochemically and studied a composite materials based on an organic conducting polymer, polyaniline (PANI), in which inorganic semiconductor titanium dioxide (TiO2) particles were incorporated with different concentrations. The polyaniline/titanium dioxide composite material which had been deposited by cyclic voltammetry on substrates of indium tin oxide was then characterized. The cyclic voltammogram showed one redox couple characteristic of the oxidation and reduction states of the produced composite material. The impedance spectroscopy study showed that the resistance of the film increases with the TiO2 cocntent incorporated in the polymer. The incorporation of TiO2 in PANI covering the surfaces was confirmed by the scanning electron microscopy and the energy dispersive X-ray analysis. The morphological analysis of the film surfaces showed that the TiO2 nanoparticle increased the roughness. These observations allow to consider a new approach to improve the physicochemical properties of the interface between the organic and inorganic material. The IV characteristics of PANI+TiO2 heterostructure diode showed the nonlinear nature of the IV curve of PANI+TiO2 heterostructure device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pringsheim E, Terpetschnig E, Wolfbeis OS (1997) Anal Chim Acta 357:247

    Article  CAS  Google Scholar 

  2. Chung C-Y, Wen T-C, Gopalan A (2001) Electrochim Acta 47:423

    Article  CAS  Google Scholar 

  3. Maia DJ, das Neves S, Alves OL, De Paoli M-A (1999) Electrochim Acta 44:1945

    Article  CAS  Google Scholar 

  4. Balarama Krishna MV, Ranjit M, Chandrasekaran K, Venkateswarlu G, Karunasagar D (2009) Talanta 79:1454

    Article  Google Scholar 

  5. Frydrychewicz A, Vassiliev SY, Tsirlina GA, Jackowska K (2005) Electrochim Acta 50:1885

    Article  CAS  Google Scholar 

  6. Misoon O, Kim S (2012) Electrochim Acta 78:279

    Article  Google Scholar 

  7. Balci N, Bayramli E, Toppare L (1997) J Appl Polym Sci 64:667

    Article  CAS  Google Scholar 

  8. Kannusamy P, Sivalingam T (2013) Polym Degrad Stab 98:988

    Article  CAS  Google Scholar 

  9. Kinyanjui JM, Wijeratne NR, Hanks J, Hatchett DW (2006) Electrochim Acta 51:2825

    Article  CAS  Google Scholar 

  10. Lee SS, Bai H, Liu Z, Sun DD (2013) Water Res 47:4059

    Article  CAS  Google Scholar 

  11. Dadfar MR, Ebrahimi SAS, Dadfar M (2012) J Magn Magn Mater 324:4204

    Article  CAS  Google Scholar 

  12. Dey A, De S, De A, De SK (2004) Nanotechnology 15:1277

    Article  CAS  Google Scholar 

  13. Dervosa CT, Thiriosa EF, Novacovicha J, Vassilioub P, Skafidas P (2004) Mater Lett 58:1502

    Article  Google Scholar 

  14. Beydoun D, Amal R (2002) Mater Sci Eng B 94:71

    Article  Google Scholar 

  15. Ye FX, Ohmori A, Li CJ (2004) Surf Coat Technol 184:233

    Article  CAS  Google Scholar 

  16. Petrella A, Tamborra M, Cozzoli PD, Curri ML, Striccoli M, Cosma P, Farinola GM, Babudri F, Naso F, Agostiano A (2004) Thin Solid Films 451:64

    Article  Google Scholar 

  17. Li Y, Yu Y, Wu L, Zhi J (2013) Appl Surf Sci 273:135

    Article  CAS  Google Scholar 

  18. Gemeay AH, Mansour IA, El-Sharkawy RG, Zaki AB (2005) Eur Polym J 41:2575

    Article  CAS  Google Scholar 

  19. Beek WJE, Wienk MJ, Janssen RAJ (2004) Adv Mater 16:1009

    Article  CAS  Google Scholar 

  20. Zhang L, Liu P, Su Z (2006) Polym Degrad Stab 91:2213

    Article  CAS  Google Scholar 

  21. Han Y, Kusunose T, Sekino T (2008) Mater Sci Forum 569:161

    Article  CAS  Google Scholar 

  22. Kim B, Lee K, Huh P, Lee D, Jo N, Lee J (2009) Synth Met 159:1369

    Article  CAS  Google Scholar 

  23. Xu JC, Liu WM, Li HL (2005) Mater Sci Eng C 25:444

    Article  Google Scholar 

  24. Kwon J, Kim P, Keum J, Kim J (2004) Sol Energy Mater Sol Cells 83:311

    Article  CAS  Google Scholar 

  25. Kobayashi T, Yoneyama H, Tamura H (1984) J Electroanal Chem 177:293

    Article  CAS  Google Scholar 

  26. Genies EM, Tsintavis C (1985) J Electroanal Chem 195:109

    Article  CAS  Google Scholar 

  27. Genies EM, Lapkowski M, Pennean JF (1988) J Electroanal Chem 249:97

    Article  CAS  Google Scholar 

  28. Trung T, Trung TH, Ha C-S (2005) Electrochim Acta 51:984

    Article  CAS  Google Scholar 

  29. Ren X, Pickup PG (1997) J Electroanal Chem 420:251

    Article  CAS  Google Scholar 

  30. Montelius L, Tegenfeldt JO, Ling TG (1995) J Vac Sci Technol A 13:1755

    Article  CAS  Google Scholar 

  31. Van Gerwen PV, Laureyn W, Laureys W, Huyberechts H, Op De Beeck M, Baert K, Suls J, Sansen W, Jacobs P, Hermans L, Martens R (1998) Sensors Actuators B 49:73

    Article  Google Scholar 

  32. Macdonald JR (1987) Impedance spectroscopy. Ed. Wiley, New York

    Google Scholar 

  33. Ximin H, Gaoquan S (2006) Sensors Actuators B 115:488

    Article  Google Scholar 

  34. Mostafaei A, Nasirpouri F (2014) Prog Org Coat 77:146

    Article  CAS  Google Scholar 

  35. Gok A, Omastova M, Prokes J (2007) Eur Polym J 43:2471

    Article  Google Scholar 

  36. Munoz E, Colina A, Heras A, Ruiz V, Palmero S, Lopez-Palacios J (2006) Anal Chim Acta 573:20

    Article  Google Scholar 

  37. Rahy A, Rguig T, Cho SJ, Bunker CE, Yang DJ (2011) Synth Met 161:280

    Article  CAS  Google Scholar 

  38. Laska J (2004) J Mol Struct 701:13

    Article  CAS  Google Scholar 

  39. Zhou EJ, He C, Tan ZA, Yang CH, Li YF (2006) J Polym Sci A 44:4916

    Article  CAS  Google Scholar 

  40. Hou JH, Tan ZA, Yan Y, He YJ, Yang CH, Li YF (2006) J Am Chem Soc 128:4911

    Article  CAS  Google Scholar 

  41. Hou JH, Huo LJ, He C, Yang CH, Li YF (2006) Macromolecules 39:594

    Article  CAS  Google Scholar 

  42. Katoch A, Burkhart M, Hwang T, Kim SS (2012) Chem Eng J 192:262

    Article  CAS  Google Scholar 

  43. Derbal-Habak H, Bergeret C, Cousseau J, Nunzi JM (2011) Sol Energy Mater Sol Cells 95:S53

    Article  CAS  Google Scholar 

  44. Bredas JL, Scott JC, Yakushi K, Street GB (1984) Phys Rev B 30:1023

    Article  CAS  Google Scholar 

  45. Li Q, Satur DJG, Kim H, Kim HG (2012) Mater Lett 76:169

    Article  CAS  Google Scholar 

  46. Wang Y, Zhang J, Liu L, Zhu C, Liu X, Su Q (2012) Mater Lett 75:95

    Article  CAS  Google Scholar 

  47. Stejskal J, Sapurina I, Trchová M (2010) Prog Polym Sci 35:1420

    Article  CAS  Google Scholar 

  48. Yavuz AG, Gök A (2007) Synth Met 157:235

    Article  CAS  Google Scholar 

  49. Savitha KU, Gurumallesh Prabu H (2011) Mater Chem Phys 130:275

    Article  CAS  Google Scholar 

  50. Deivanayaki S, Ponnuswamy V, Ashokan S, Jayamurugan P, Mariappan R (2013) Mater Sci Semicond Process 16:554

    Article  CAS  Google Scholar 

  51. Jo W-K, Kang H-J (2013) Mater Chem Phys 143:247

    Article  CAS  Google Scholar 

  52. Ferreira CA, Domenech SC, Lacaze PC (2001) J Appl Electrochem 31:49

    Article  CAS  Google Scholar 

  53. Lenz DM, Ferreira CA, Delamar M (2002) Synth Met 126:179

    Article  CAS  Google Scholar 

  54. Ma X, Wang M, Li G, Chen H, Bai R (2006) Mater Chem Phys 98:241

    Article  CAS  Google Scholar 

  55. Singh P, Sinha OP, Srivastava R, Srivastava AK, Kaur Bindra J, Singh RP, Kamalasanan MN (2012) Mater Chem Phys 133:317–323

    Article  CAS  Google Scholar 

  56. Li Y, Gong J, He G, Deng Y (2011) Mater Chem Phys 129:477

    Article  CAS  Google Scholar 

  57. Ameen S, Shaheer Akhtar M, Ansari SG, Yang O-B, Shin H-S (2009) Superlattice Microst 46:872

    Article  CAS  Google Scholar 

  58. Çetin H, Boyarbay B, Akkaya A, Uygun A, Ayyildiz E (2011) Synth Met 161:2384

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Kamal Lmimouni of the University of Sciences and Technologies of Lille 1 (France) Microscopy Service for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhila Abaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abaci, S., Nessark, B. & Riahi, F. Preparation and characterization of polyaniline+TiO2 composite films. Ionics 20, 1693–1702 (2014). https://doi.org/10.1007/s11581-014-1129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1129-9

Keywords

Navigation