Skip to main content
Log in

Construction of Dual-Target Recognition-Based Specific MicroRNA Detection Method for Acute Pancreatitis Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play crucial roles in regulating various biological processes and are considered promising biomarkers for clinical diagnosis and therapy of acute pancreatitis. Herein, we present a duplex-specific nuclease (DSN enzyme) and DNAzyme-assisted fluorescent miRNA detections assay that can provide improved detection specificity due to a design of dual-target recognition and a comparable sensitivity. The dual-target recognitions are composed of (i) miRNA unfold hairpin structure toehold to form DNA-RNA duplex, among which the DNA section will be digested by DSN enzyme, releasing miRNA to participant in a next recycle. (ii) After DNAzyme-based nicking site formation in loop section of molecular beacon (MB), miRNA can bind with the loop section of MB and gradually unfold MB probe, generating fluorescence signals. With this general principle, distinct discrimination capability towards even one base pair mismatch of homogenous miRNA is obtained, showing a promising prospect in clinical diagnosis and therapy of acute pancreatitis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Sinonquel, P., Laleman, W., & Wilmer, A. (2021). Advances in acute pancreatitis. Current Opinion in Critical Care, 27, 193–200.

    Article  Google Scholar 

  2. Gariepy, C. E., Ooi, C. Y., Maqbool, A., & Ellery, K. M. (2021). Demographics and risk factors for pediatric recurrent acute pancreatitis. Current Opinion in Gastroenterology, 37, 491–497.

    Article  Google Scholar 

  3. Baeza-Zapata, A. A., Garcia-Compean, D., Jaquez-Quintana, J. O., & Collaborators. (2021). Acute Pancreatitis in Elderly Patients. Gastroenterology, 161, 1736–1740.

    Article  Google Scholar 

  4. Shen, Q., & Reedijk, M. (2021). Notch Signaling and the Breast Cancer Microenvironment. Advances in Experimental Medicine and Biology, 1287, 183–200.

    Article  CAS  Google Scholar 

  5. Sabit, H., Cevik, E., Tombuloglu, H., Abdel-Ghany, S., Tombuloglu, G., & Esteller, M. (2021). Triple negative breast cancer in the era of miRNA. Critical Reviews in Oncology/Hematology, 157, 103196.

  6. Backes, C., Meese, E., & Keller, A. (2016). Specific miRNA disease biomarkers in blood, serum and plasma: Challenges and prospects. Molecular Diagnosis and Therapy, 20, 509–518.

    Article  CAS  Google Scholar 

  7. Tiwari, A., Mukherjee, B., & Dixit, M. (2018). MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Current Cancer Drug Targets, 18, 266–277.

    Article  CAS  Google Scholar 

  8. Lakshmi, S., Hughes, T. A., & Priya, S. (2021). Exosomes and exosomal RNAs in breast cancer: A status update. European Journal of Cancer, 144, 252–268.

    Article  CAS  Google Scholar 

  9. Sukumar, J., Gast, K., Quiroga, D., Lustberg, M., & Williams, N. (2021). Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Review of Anticancer Therapy, 21, 135–148.

    Article  CAS  Google Scholar 

  10. Zhang, M., Bai, X., Zeng, X., Liu, J., Liu, F., & Zhang, Z. (2021). circRNA-miRNA-mRNA in breast cancer. Clinica Chimica Acta, 523, 120–130.

    Article  CAS  Google Scholar 

  11. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.

  12. Forero, D. A., Gonzalez-Giraldo, Y., Castro-Vega, L. J., & Barreto, G. E. (2019). qPCR-based methods for expression analysis of miRNAs. Biotechniques, 67, 192–199.

    Article  CAS  Google Scholar 

  13. Takei, F., Akiyama, M., Murata, A., Sugai, A., Nakatani, K., & Yamashita, I. (2020). RT-Hpro-PCR: A microRNA detection system using a primer with a DNA tag. Chembiochem, 21, 477–480.

    Article  CAS  Google Scholar 

  14. Bejerano, T., Etzion, S., Elyagon, S., Etzion, Y., & Cohen, S. (2018). Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Letters, 18, 5885–5891.

    Article  CAS  Google Scholar 

  15. Li, F., Li, G., Cao, S., Liu, B., Ren, X., Kang, N., & Qiu, F. (2021). Target-triggered entropy-driven amplification system-templated silver nanoclusters for multiplexed microRNA analysis. Biosensors and Bioelectronics, 172, 112757.

  16. Song, W., Zhu, K., Cao, Z., Lau, C., & Lu, J. (2012). Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. Analyst, 137, 1396–1401.

    Article  CAS  Google Scholar 

  17. Song, Y., Zhang, C., Zhang, J., Jiao, Z., Dong, N., Wang, G., et al. (2019). Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics, 9, 2346–2360.

    Article  CAS  Google Scholar 

  18. Uso, M., Jantus-Lewintre, E., Sirera, R., Bremnes, R. M., & Camps, C. (2014). miRNA detection methods and clinical implications in lung cancer. Future Oncology, 10, 2279–2292.

    Article  CAS  Google Scholar 

  19. Wu, H., Zhou, W. J., Liu, L., Fan, Z., Tang, H., Yu, R. Q., & Jiang, J. H. (2020). In vivo mRNA imaging based on tripartite DNA probe mediated catalyzed hairpin assembly. Chemical Communications, 56, 8782–8785.

    Article  CAS  Google Scholar 

  20. Xu, S., & Lou, Z. (2021). Ultrasensitive detection of nasopharyngeal carcinoma-related miRNA through garland rolling circle amplification integrated catalytic hairpin Assembly. ACS Omega, 6, 6460–6465.

    Article  CAS  Google Scholar 

  21. Zhang, G. Z. L., Tong, J., Zhao, X., Ren, J. (2020). CRISPR-Cas12a enhanced rolling circle amplification method for ultrasensitive miRNA detection. Microchemical Journal, 158, 105239.

  22. Zhang, W., Xu, H., Zhao, X., Tang, X., Yang, S., Yu, L., et al. (2020). 3D DNA nanonet structure coupled with target-catalyzed hairpin assembly for dual-signal synergistically amplified electrochemical sensing of circulating microRNA. Analytica Chimica Acta, 1122, 39–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial and equipment support from The Third Affiliated Hospital of Chongqing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and G.M. designed the strategy, completed the preparation of the research, and wrote the manuscript; R.Y., Y.Z., S.D., and G.M. assisted data analysis.

Corresponding author

Correspondence to Mingwei Gong.

Ethics declarations

Ethical Approval

Permission from the Institutional Animal Ethical Committee was received before making these experiments.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14.1 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Rong, Y., Yang, Z. et al. Construction of Dual-Target Recognition-Based Specific MicroRNA Detection Method for Acute Pancreatitis Analysis. Appl Biochem Biotechnol 194, 3136–3144 (2022). https://doi.org/10.1007/s12010-022-03907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03907-7

Keywords

Navigation