Skip to main content
Log in

Three-Way Junction-Assisted Rolling Circle Amplification Integrated with trans-Cleavage of Cas12a for Sensitive and Reliable Detection of miRNA

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) serve a crucial role in numerous biological processes, such as acute pancreatitis development. Due to its low abundance and high similarity among homogeneous family members, sensitive and reliable detection of microRNA remains a formidable challenge. By combining the three-way junction-assisted rolling circle amplification (RCA) with the trans-cleavage of Cas12a, we propose a novel fluorescent technique for sensitive miRNA detection. In order to increase the amplification efficiency of RCA-based methods, catalytic hairpin amplification (CHA) is incorporated into the RCA process, playing the roles of specific target recognition and three-way junction formation. Consequently, the method demonstrated a six-orders-of-magnitude detection range and a LOD as low as 27 aM, making it a promising method for the early diagnosis of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Du, W., Liu, G., Shi, N., Tang, D., Ferdek, P. E., Jakubowska, M. A., Liu, S., Zhu, X., Zhang, J., Yao, L., Sang, X., Zou, S., Liu, T., Mukherjee, R., Criddle, D. N., Zheng, X., Xia, Q., Berggren, P. O., Huang, W., … Fu, X. (2022). A microRNA checkpoint for Ca(2+) signaling and overload in acute pancreatitis. Molecular Therapy, 30, 1754–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang, Y., Huang, Q., Luo, C., Wen, Y., Liu, R., Sun, H., & Tang, L. (2020). MicroRNAs in acute pancreatitis: From pathogenesis to novel diagnosis and therapy. Journal of Cellular Physiology, 235, 1948–1961.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, W., Dong, S., Chen, Z., Li, X., & Jiang, W. (2022). New challenges for microRNAs in acute pancreatitis: Progress and treatment. Journal of Translational Medicine, 20, 192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mohr, A. M., & Mott, J. L. (2015). Overview of microRNA biology. Seminars in Liver Disease, 35, 3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pozniak, T., Shcharbin, D., & Bryszewska, M. (2022). Circulating microRNAs in medicine. International Journal of Molecular Sciences, 23, 3996.

  6. Qu, K., Zhang, X., Lin, T., Liu, T., Wang, Z., Liu, S., Zhou, L., Wei, J., Chang, H., Li, K., Wang, Z., Liu, C., & Wu, Z. (2017). Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: Evidence from comprehensive miRNA expression profiling analysis and clinical validation. Science and Reports, 7, 1692.

    Article  Google Scholar 

  7. Muhlberg, L., Kuhnemuth, B., Costello, E., Shaw, V., Sipos, B., Huber, M., Griesmann, H., Krug, S., Schober, M., Gress, T. M., & Michl, P. (2016). miRNA dynamics in tumor-infiltrating myeloid cells modulating tumor progression in pancreatic cancer. Oncoimmunology, 5, e1160181.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tang, J., Li, X., Cheng, T., & Wu, J. (2021). miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thorac Cancer, 12, 2307–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Juan, D., Gangyi, C., Wei, W., Xin, H., Huipan, P., Qinlin, P., Feng, D., Xin, C., Yun, D., & Zhuo, T. (2018). Colorimetric PCR-based microRNA detection method based on small organic dye and single enzyme. Analytical Chemistry, 90, 7107–7111.

    Article  Google Scholar 

  10. Androvic, P., Valihrach, L., Elling, J., Sjoback, R., & Mikael, K. (2017). Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Res, 45, 144.

    Article  Google Scholar 

  11. Pall, G. S., & Hamilton, A. J. (2008). Improved northern blot method for enhanced detection of small RNA. Nature Protocols, 3, 1077.

    Article  CAS  PubMed  Google Scholar 

  12. Várallyay, É., Burgyán, J., & Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 3, 190–196.

    Article  PubMed  Google Scholar 

  13. Li, W., & Ruan, K. (2009). MicroRNA detection by microarray. Analytical and Bioanalytical Chemistry B, 394, 1117–1124.

    Article  CAS  Google Scholar 

  14. Johne, R., Muller, H., Rector, A., van Ranst, M., & Stevens, H. (2009). Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends in Microbiology, 17, 205–211.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, L., Duan, J., Chen, J., Ding, S., & Cheng, W. (2021). Recent advances in rolling circle amplification-based biosensing strategies-A review. Analytica Chimica Acta, 1148, 238187.

    Article  CAS  PubMed  Google Scholar 

  16. Song, W., Zhu, K., Cao, Z., Lau, C., & Lu, J. (2012). Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. The Analyst, 137, 1396–1401.

    Article  CAS  PubMed  Google Scholar 

  17. Wu, J., Tian, Y., He, L., Zhang, J., Huang, Z., Luo, Z., & Duan, Y. (2021). An efficient localized catalytic hairpin assembly-based DNA nanomachine for miRNA-21 imaging in living cells. The Analyst, 146, 3041–3051.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, L., Mao, J., Hu, L., Zhang, S., & Yang, X. (2021). Self-replicating catalyzed hairpin assembly for rapid aflatoxin B1 detection. Analytical Methods, 13, 222–226.

    Article  PubMed  Google Scholar 

  19. Zhao, Y., Chen, F., Li, Q., Wang, L., & Fan, C. (2015). Isothermal amplification of nucleic acids. Chemical Reviews, 115, 12491–12545.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, R., Zhao, X., Chen, X., Qiu, X., Qing, G., Zhang, H., Zhang, L., Hu, X., He, Z., Zhong, D., Wang, Y., & Luo, Y. (2020). Rolling circular amplification (RCA)-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extracellular vesicle MicroRNAs. Analytical Chemistry, 92, 2176–2185.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, G., Zhang, L., Tong, J., Zhao, X., & Ren, J. (2020). CRISPR-Cas12a enhanced rolling circle amplification method for ultrasensitive miRNA detection. Microchemical Journal, 158, 105239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the Chongqing Medical University. We also thank the director of central laboratory for providing essential equipment.

Author information

Authors and Affiliations

Authors

Contributions

Shuqi Zhao designed and wrote the manuscript; Zhiquan Wu performed experiments and analyzed obtained data.

Corresponding author

Correspondence to Shuqi Zhao.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhao, S. Three-Way Junction-Assisted Rolling Circle Amplification Integrated with trans-Cleavage of Cas12a for Sensitive and Reliable Detection of miRNA. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04691-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04691-8

Keywords

Navigation