Skip to main content
Log in

Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects

  • Leading Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Significant effort has been devoted to discovering microRNA (miRNA) disease biomarkers. In particular, miRNAs in whole blood or specific blood components are candidates for improving the diagnosis of diseases, including life-threatening pathologies. This review covers the challenges crucial for the translation of miRNAs in body fluids (circulating miRNAs) from a research setting into a clinical care scenario. First, we discuss the specificity of miRNA biomarkers for the diagnosis of a disease. While single miRNAs such as miR-20a, miR-21, miR-155, and miR-126 are frequently not disease specific, miRNA signatures that consist of a plurality of different miRNAs may help to improve differentiation between pathologies. Second, we discuss the degree of reproducibility and highlight selected validation studies. While single miRNA markers are often confirmed by independent studies, miRNA signatures are less frequently verified. Third, we address challenges to the profiling of miRNAs in high-throughput settings and we discuss the appropriateness of various analytical platforms and bioinformatics towards a clinical application of miRNAs. Finally, we shed light on the suitability of enriched miRNA sources, e.g. fractionation of body fluids for extracellular vesicles such as exosomes or blood cells, to develop miRNA signatures. With an increasing number of verified miRNA signatures and with the advance of matured medium-throughput approaches in clinical settings, specific miRNA markers are increasingly likely to contribute to human healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.

    Article  CAS  PubMed  Google Scholar 

  3. Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(Database issue):D109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–8.

    CAS  PubMed  Google Scholar 

  5. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.

    Article  CAS  PubMed  Google Scholar 

  6. Olivieri F, Antonicelli R, Capogrossi MC, Procopio AD. Circulating microRNAs (miRs) for diagnosing acute myocardial infarction: an exciting challenge. Int J Cardiol. 2013;167(6):3028–9.

    Article  PubMed  Google Scholar 

  7. Matullo G, Naccarati A, Pardini B. microRNA expression profiling in bladder cancer: the challenge of next generation sequencing in tissues and biofluids. Int J Cancer. 2016;138(10):2334–45.

    Article  CAS  PubMed  Google Scholar 

  8. Fusco A. MicroRNAs: a great challenge for the diagnosis and therapy of endocrine cancers. Endocr Relat Cancer. 2010;17(1):E3–4.

    Article  PubMed  Google Scholar 

  9. Backes C, Sedaghat-Hamedani F, Frese K, Hart M, Ludwig N, Meder B, et al. Bias in high-throughput analysis of miRNAs and implications for biomarker studies. Anal Chem. 2016;88(4):2088–95. doi:10.1021/acs.analchem.5b03376.

  10. Guo L, Chen F. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene. 2014;544(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Keller A, Meese E. Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in clinical settings? Wiley Interdiscip Rev RNA. 2016;7(2):148–56.

    Article  CAS  PubMed  Google Scholar 

  12. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, et al. An analysis of human microRNA and disease associations. PLoS ONE. 2008;3(10):e3420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu GF, Yang LX, Guo RW, Liu H, Shi YK, Ye JS, et al. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score. Coron Artery Dis. 2014;25(4):304–10.

    Article  PubMed  Google Scholar 

  15. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  16. Corral-Fernandez NE, Salgado-Bustamante M, Martinez-Leija ME, Cortez-Espinosa N, Garcia-Hernandez MH, Reynaga-Hernandez E, et al. Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2013;121(6):347–53.

    Article  CAS  PubMed  Google Scholar 

  17. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10(4):R101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Churov AV, Oleinik EK, Knip M. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun Rev. 2015;14(11):1029–37.

    Article  CAS  PubMed  Google Scholar 

  19. Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer. 2012;130(6):1378–86.

    Article  CAS  PubMed  Google Scholar 

  20. Tang D, Shen Y, Wang M, Yang R, Wang Z, Sui A, et al. Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer. Eur J Cancer Prev. 2013;22(6):540–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lv ZC, Fan YS, Chen HB, Zhao DW. Investigation of microRNA-155 as a serum diagnostic and prognostic biomarker for colorectal cancer. Tumour Biol. 2015;36(3):1619–25.

    Article  CAS  PubMed  Google Scholar 

  22. Shaker O, Maher M, Nassar Y, Morcos G, Gad Z. Role of microRNAs -29b-2, -155, -197 and -205 as diagnostic biomarkers in serum of breast cancer females. Gene. 2015;560(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  23. Ren J, Zhang J, Xu N, Han G, Geng Q, Song J, et al. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS One. 2013;8(12):e80738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsai PC, Liao YC, Wang YS, Lin HF, Lin RT, Juo SH. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res. 2013;50(4):346–54.

    Article  CAS  PubMed  Google Scholar 

  25. Xie L, Wu M, Lin H, Liu C, Yang H, Zhan J, et al. An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers. Mol BioSyst. 2014;10(5):1072–81.

    Article  CAS  PubMed  Google Scholar 

  26. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107(6):810–7.

    Article  CAS  PubMed  Google Scholar 

  27. Osipova J, Fischer DC, Dangwal S, Volkmann I, Widera C, Schwarz K, et al. Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab. 2014;99(9):E1661–5.

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Sundquist J, Zoller B, Memon AA, Palmer K, Sundquist K, et al. Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2. PLoS ONE. 2014;9(1):e86792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;23(424):99–103.

    Article  CAS  Google Scholar 

  30. Yang X, Guo Y, Du Y, Yang J, Li S, Liu S, et al. Serum microRNA-21 as a diagnostic marker for lung carcinoma: a systematic review and meta-analysis. PLoS One. 2014;9(5):e97460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen H, Liu H, Zou H, Chen R, Dou Y, Sheng S, et al. Evaluation of plasma miR-21 and miR-152 as diagnostic biomarkers for common types of human cancers. J Cancer. 2016;7(5):490–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shan L, Ji Q, Cheng G, Xia J, Liu D, Wu C, et al. Diagnostic value of circulating miR-21 for colorectal cancer: a meta-analysis. Cancer Biomark. 2015;15(1):47–56.

    CAS  PubMed  Google Scholar 

  33. Matamala N, Vargas MT, Gonzalez-Campora R, Minambres R, Arias JI, Menendez P, et al. Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection. Clinical Chem. 2015;61(8):1098–106.

    Article  CAS  Google Scholar 

  34. Batra JS, Girdhani S, Hlatky L. A quest to identify prostate cancer circulating biomarkers with a bench-to-bedside potential. J Biomark. 2014;2014:321680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol. 2011;32(3):583–8.

    Article  CAS  Google Scholar 

  36. Wang B, Zhang Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol. 2012;138(10):1659–66.

    Article  CAS  PubMed  Google Scholar 

  37. Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, et al. Toward the blood-borne miRNome of human diseases. Nat Methods. 2011;8(10):841–3.

    Article  CAS  PubMed  Google Scholar 

  38. Meder B, Backes C, Haas J, Leidinger P, Stahler C, Grossmann T, et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem. 2014;60(9):1200–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Zhao H, Gao X, Wei F, Zhang X, Su Y, et al. Identification of a three-miRNA signature as a blood-borne diagnostic marker for early diagnosis of lung adenocarcinoma. Oncotarget. 2016. doi:10.18632/oncotarget.8429.

  40. Keller A, Ludwig N, Comtesse N, Hildebrandt A, Meese E, Lenhof HP. A minimally invasive multiple marker approach allows highly efficient detection of meningioma tumors. BMC Bioinform. 2006;7:539.

    Article  CAS  Google Scholar 

  41. Wang L, Zhu MJ, Ren AM, Wu HF, Han WM, Tan RY, et al. A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. PLoS One. 2014;9(5):e96472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kodahl AR, Lyng MB, Binder H, Cold S, Gravgaard K, Knoop AS, et al. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol. 2014;8(5):874–83.

    Article  CAS  PubMed  Google Scholar 

  43. Vogel B, Keller A, Frese KS, Leidinger P, Sedaghat-Hamedani F, Kayvanpour E, et al. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur Heart J. 2013;34(36):2812–22.

    Article  CAS  PubMed  Google Scholar 

  44. Hanniford D, Zhong J, Koetz L, Gaziel-Sovran A, Lackaye DJ, Shang S, et al. A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis. Clin Cancer Res. 2015;21(21):4903–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14(7):R78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446–54.

    Article  CAS  PubMed  Google Scholar 

  47. Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8(6):811–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liebetrau C, Mollmann H, Dorr O, Szardien S, Troidl C, Willmer M, et al. Release kinetics of circulating muscle-enriched microRNAs in patients undergoing transcoronary ablation of septal hypertrophy. J Am Coll Cardiol. 2013;62(11):992–8.

    Article  CAS  PubMed  Google Scholar 

  49. Wang R, Li N, Zhang Y, Ran Y, Pu J. Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med. 2011;50(17):1789–95.

    Article  CAS  PubMed  Google Scholar 

  50. Eitel I, Adams V, Dieterich P, Fuernau G, de Waha S, Desch S, et al. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am Heart J. 2012;164(5):706–14.

    Article  CAS  PubMed  Google Scholar 

  51. Sun Y, Wang M, Lin G, Sun S, Li X, Qi J, et al. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS One. 2012;7(10):e47003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu J, Mao Q, Liu Y, Hao X, Zhang S, Zhang J. Analysis of miR-205 and miR-155 expression in the blood of breast cancer patients. Chin J Cancer Res. 2013;25(1):46–54.

    PubMed  PubMed Central  Google Scholar 

  53. Eichelser C, Flesch-Janys D, Chang-Claude J, Pantel K, Schwarzenbach H. Deregulated serum concentrations of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem. 2013;59(10):1489–96.

    Article  CAS  PubMed  Google Scholar 

  54. Schwarzenbach H, Milde-Langosch K, Steinbach B, Muller V, Pantel K. Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat. 2012;134(3):933–41.

    Article  CAS  PubMed  Google Scholar 

  55. Si H, Sun X, Chen Y, Cao Y, Chen S, Wang H, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol. 2013;139(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  56. Wei J, Gao W, Zhu CJ, Liu YQ, Mei Z, Cheng T, et al. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer. 2011;30(6):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang ZX, Bian HB, Wang JR, Cheng ZX, Wang KM, De W. Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer. J Surg Oncol. 2011;104(7):847–51.

    Article  CAS  PubMed  Google Scholar 

  58. Markou A, Sourvinou I, Vorkas PA, Yousef GM, Lianidou E. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer. 2013;81(3):388–96.

    Article  CAS  PubMed  Google Scholar 

  59. Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, et al. miRNA-199a-3p in plasma as a potential diagnostic biomarker for gastric cancer. Ann Surg Oncol. 2013;20(Suppl 3):S397–405.

    Article  PubMed  Google Scholar 

  60. Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, et al. MiRNA-199a-3p: a potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol. 2013;108(2):89–92.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Backes C, Leidinger P, Altmann G, Wuerstle M, Meder B, Galata V, et al. Influence of next-generation sequencing and storage conditions on miRNA patterns generated from PAXgene blood. Anal Chem. 2015;87(17):8910–6.

    Article  CAS  PubMed  Google Scholar 

  63. Leidinger P, Backes C, Rheinheimer S, Keller A, Meese E. Towards clinical applications of blood-borne miRNA signatures: the influence of the anticoagulant EDTA on miRNA abundance. PLoS One. 2015;10(11):e0143321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Latorre I, Leidinger P, Backes C, Dominguez J, de Souza-Galvao ML, Maldonado J, et al. A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis. Eur Resp J. 2015;45(4):1173–6.

    Article  CAS  Google Scholar 

  65. Bauer AS, Keller A, Costello E, Greenhalf W, Bier M, Borries A, et al. Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS ONE. 2012;7(4):e34151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One. 2009;4(10):e7440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Keller A, Leidinger P, Meese E, Haas J, Backes C, Rasche L, et al. Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis. J Neuroinflamm. 2015;12:196.

    Article  Google Scholar 

  68. Keller A, Leidinger P, Borries A, Wendschlag A, Wucherpfennig F, Scheffler M, et al. miRNAs in lung cancer—studying complex fingerprints in patient’s blood cells by microarray experiments. BMC Cancer. 2009;9:353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leidinger P, Keller A, Borries A, Reichrath J, Rass K, Jager SU, et al. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer. 2010;10:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Margue C, Reinsbach S, Philippidou D, Beaume N, Walters C, Schneider JG, et al. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget. 2015;6(14):12110–27.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Keller A, Backes C, Haas J, Leidinger P, Maetzler W, Deuschle C, et al. Validating Alzheimer’s disease micro RNAs using next-generation sequencing. Alzheimers Dement. 2016;12(5):565–76.

    Article  PubMed  Google Scholar 

  72. Leidinger P, Brefort T, Backes C, Krapp M, Galata V, Beier M, et al. High-throughput qRT-PCR validation of blood microRNAs in non-small cell lung cancer. Oncotarget. 2016;7(4):4611–23. doi:10.18632/oncotarget.6566.

  73. Sapre N, Hong MK, Macintyre G, Lewis H, Kowalczyk A, Costello AJ, et al. Curated microRNAs in urine and blood fail to validate as predictive biomarkers for high-risk prostate cancer. PLoS One. 2014;9(4):e91729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Russo F, Di Bella S, Nigita G, Macca V, Lagana A, Giugno R, et al. miRandola: extracellular circulating microRNAs database. PLoS One. 2012;7(10):e47786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 2014;42(Database issue):D1070–4.

    Article  CAS  PubMed  Google Scholar 

  76. Backes C, Leidinger P, Keller A, Hart M, Meyer T, Meese E, et al. Blood born miRNAs signatures that can serve as disease specific biomarkers are not significantly affected by overall fitness and exercise. PLoS One. 2014;9(7):e102183.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wardle SL, Bailey ME, Kilikevicius A, Malkova D, Wilson RH, Venckunas T, et al. Plasma microRNA levels differ between endurance and strength athletes. PLoS One. 2015;10(4):e0122107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Willenbrock H, Salomon J, Sokilde R, Barken KB, Hansen TN, Nielsen FC, et al. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA. 2009;15(11):2028–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hafner M, Renwick N, Brown M, Mihailovic A, Holoch D, Lin C, et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA. 2011;17(9):1697–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015;112(10):E1106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Backes C, Keller A. Reanalysis of 3,707 novel human microRNA candidates. Proc Natl Acad Sci USA. 2015;112(22):E2849–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Backes C, Meder B, Hart M, Ludwig N, Leidinger P, Vogel B, et al. Prioritizing and selecting likely novel miRNAs from NGS data. Nucleic Acids Res. 2016;44(6):e53. doi:10.1093/nar/gkv1335

  83. Hardikar AA, Farr RJ, Joglekar MV. Circulating microRNAs: understanding the limits for quantitative measurement by real-time PCR. J Am Heart Assoc. 2014;3(1):e000792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hofmann S, Huang Y, Paulicka P, Kappel A, Katus HA, Keller A, et al. Double-stranded ligation assay for the rapid multiplex quantification of MicroRNAs. Anal Chem. 2015;87(24):12104–11.

    Article  CAS  PubMed  Google Scholar 

  85. Liu Q, Shin Y, Kee JS, Kim KW, Rafei SR, Perera AP, Tu X, Lo GQ, Ricci E, Colombel M, Chiong E, Thiery JP, Park MK. Mach-Zehnder interferometer (MZI) point-of-care system for rapid multiplexed detection of microRNAs in human urine specimens. Biosens Bioelectron. 2015;71:365–72.

    Article  CAS  PubMed  Google Scholar 

  86. Labib M, Berezovski MV. Electrochemical sensing of microRNAs: avenues and paradigms. Biosens Bioelectron. 2015;15(68):83–94.

    Article  CAS  Google Scholar 

  87. Kappel A, Backes C, Huang Y, Zafari S, Leidinger P, Meder B, et al. MicroRNA in vitro diagnostics using immunoassay analyzers. Clin Chem. 2015;61(4):600–7.

    Article  CAS  PubMed  Google Scholar 

  88. Kricka LJ, Wilson RB. RNA testing now automated. Clin Chem. 2015;61(4):571–2.

    Article  CAS  PubMed  Google Scholar 

  89. Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Res. 2016;44(1):24–44.

    Article  CAS  PubMed  Google Scholar 

  90. Liu CH, Wu DY, Pollock JD. Bioinformatic challenges of big data in non-coding RNA research. Front Genet. 2012;3:178.

    PubMed  PubMed Central  Google Scholar 

  91. Telonis AG, Loher P, Jing Y, Londin E, Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015;43(19):9158–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Backes C, Haas J, Leidinger P, Frese K, Grossmann T, Ruprecht K, et al. miFRame: analysis and visualization of miRNA sequencing data in neurological disorders. J Transl Med. 2015;13:224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ferte C, Trister AD, Huang E, Bot BM, Guinney J, Commo F, et al. Impact of bioinformatic procedures in the development and translation of high-throughput molecular classifiers in oncology. Clin Cancer Res. 2013;19(16):4315–25.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Leidinger P, Backes C, Meder B, Meese E, Keller A. The human miRNA repertoire of different blood compounds. BMC Genom. 2014;15:474.

    Article  CAS  Google Scholar 

  95. Leidinger P, Backes C, Dahmke IN, Galata V, Huwer H, Stehle I, et al. What makes a blood cell based miRNA expression pattern disease specific?–a miRNome analysis of blood cell subsets in lung cancer patients and healthy controls. Oncotarget. 2014;5(19):9484–97.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81.

    Article  CAS  PubMed  Google Scholar 

  97. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;73(10):1907–20.

    Article  CAS  Google Scholar 

  98. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14(10):1036–45.

    Article  CAS  PubMed  Google Scholar 

  99. Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles–diagnostic and therapeutic implications (review). Int J Oncol. 2015;46(1):17–27.

    CAS  PubMed  Google Scholar 

  100. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinform. 2015;13(1):17–24.

    Article  Google Scholar 

  101. Properzi F, Logozzi M, Fais S. Exosomes: the future of biomarkers in medicine. Biomark Med. 2013;7(5):769–78.

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, Lu Q. Extracellular vesicle microRNAs: biomarker discovery in various diseases based on RT-qPCR. Biomark Med. 2015;9(8):791–805.

    Article  CAS  PubMed  Google Scholar 

  103. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA. 2014;111(41):14888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baranyai T, Herczeg K, Onodi Z, Voszka I, Modos K, Marton N, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One. 2015;10(12):e0145686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Human Genetics and Clinical Bioinformatics Department team members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Keller.

Ethics declarations

Conflicts of interest

The authors, CB, EM and AK have no conflicts of interest.

Funding

The study was funded by internal Saarland University funds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backes, C., Meese, E. & Keller, A. Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol Diagn Ther 20, 509–518 (2016). https://doi.org/10.1007/s40291-016-0221-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0221-4

Keywords

Navigation