Skip to main content
Log in

Antioxidant, Antibacterial, and Anti-diabetic Activity of Green Synthesized Copper Nanoparticles of Cocculus hirsutus (Menispermaceae)

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The emergence of new technologies has led to the discovery of the biological properties of nanoparticles through green approach. In the present investigation, we report the potential antibacterial, antioxidant, and anti-diabetic properties of copper nanoparticle (CuNPs) synthesized by reducing 3 mM copper acetate solution with aqueous leaf extract of Cocculus hirsutus. A colour change from deep brown to dark greenish brown indicated the formation of copper nanoparticles. The so-formed CuNPs were characterized by employing UV spectroscopy, FTIR, SEM, and EDX analyses which described sheet-like structure morphology having typical size of 63.46 nm. Later, the synthesized CuNPs efficiency was evaluated against bacterial pathogens, and was found highly toxic to B. subtilis and S. aureus strains. The synthesized CuNPs were examined through H2O2 and PMA assays which demonstrated the highest free radical scavenging activity. Besides, the resulted CuNPs revealed the higher anti-diabetic efficacy in both the \(\alpha\)-amylase and \(\alpha\) -glucosidase inhibition assays (64.5% ± 0.11 and 68.5% ± 0.11, respectively). Finally, our findings report that C. hirsutus can be exploited as a source for green synthesis of CuNPs, having potent in vitro antioxidant, antibacterial, and anti-diabetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Logesh, R., Das, N., Adhikari-Devkota, A., & Devkota, H. P. (2020). Cocculus hirsutus (L.) W. Theob. (Menispermaceae): A review on traditional uses, phytochemistry and pharmacological activities. Medicines, 7(11),69. https://doi.org/10.3390/medicines7110069

  2. VU Ahmad T Rasheed S Iqbal 1991 Cohirsinine, an alkaloid from Cocculus hirsutus Phytochemistry 30 4 1350 1351 https://doi.org/10.1016/S0031-9422(00)95239-7

    Article  CAS  Google Scholar 

  3. VU Ahmad S Iqbal 1993 Jamtinine, an alkaloid from Cocculus hirsutus Phytochemistry 33 3 735 736 https://doi.org/10.1016/0031-9422(93)85490-I

    Article  Google Scholar 

  4. Rao, K. V. J., & Row, L. R. M. (1961). Chemical examination of Cocculus hirsutus DC. Journal of Scientific and Industrial Research 20b, 125–126.

  5. C Thiruppathi P Kumaravel R Duraisamy AK Prabhakaran T Jeyanthi R Sivaperumal PA Karthick 2013 Biofabrication of silver nanoparticles using Cocculus hirsutus leaf extract and their antimicrobial efficacy Asian Journal of Pharmacy and Technology 3 3 93 97

    Google Scholar 

  6. R Shah K Parmar H Vaghela 2021 Analysing antibacterial efficacy of biosynthesized palladium nanoparticles using aqueous leaf extract of Cocculus hirsutus as the reducing agent Bioscience Biotechnology Research Communications 14 2 858 865

    Article  Google Scholar 

  7. H Bar DK Bhui GP Sahoo P Sarkar S Pyne D Chattopadhyay A Misra 2012 Synthesis of gold nanoparticles of variable morphologies using aqueous leaf extracts of Cocculus hirsutus Journal of Experimental Nanoscience 7 1 109 119 https://doi.org/10.1080/17458080.2010.509875

    Article  CAS  Google Scholar 

  8. B Rabha KK Bharadwaj D Baishya T Sarkar HA Edinur S Pati 2021 Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells Polymers 13 8 1322 https://doi.org/10.3390/polym13081322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K Elumalai S Velmurugan 2015 Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.) Applied Surface Science 345 329 336 https://doi.org/10.1016/j.apsusc.2015.03.176

    Article  CAS  Google Scholar 

  10. R Dobrucka J Długaszewska 2016 Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract Saudi Journal of Biological Sciences 23 4 517 523 https://doi.org/10.1016/j.sjbs.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  11. PC Nagajyothi TVM Sreekanth CO Tettey YI Jun SH Mook 2014 Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma Bioorganic & Medicinal Chemistry Letters 24 17 4298 4303 https://doi.org/10.1016/j.bmcl.2014.07.023

    Article  CAS  Google Scholar 

  12. J Jayabharathi P Sujatha V Thanikachalam P Jeeva S Panimozhi 2017 Enhancement of electroluminescent green emission by far-field coupling of Au nanoparticles in organic light emitting diodes Industrial & Engineering Chemistry Research 56 24 6952 6961 https://doi.org/10.1021/acs.iecr.7b01674

    Article  CAS  Google Scholar 

  13. C Balalakshmi K Gopinath M Govindarajan R Lokesh A Arumugam NS Alharbi G Benelli 2017 Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii Journal of Photochemistry and Photobiology B: Biology 173 598 605 https://doi.org/10.1016/j.jphotobiol.2017.06.040

    Article  CAS  Google Scholar 

  14. P Logeswari S Silambarasan J Abraham 2015 Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property Journal of Saudi Chemical Society 19 3 311 317 https://doi.org/10.1016/j.jscs.2012.04.007

    Article  Google Scholar 

  15. KS Rajkumar N Kanipandian R Thirumurugan 2016 Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita Applied Nanoscience 6 1 19 29 https://doi.org/10.1007/s13204-015-0417-7

    Article  CAS  Google Scholar 

  16. A Kalaiselvi SM Roopan G Madhumitha C Ramalingam G Elango 2015 Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135 116 119 https://doi.org/10.1016/j.saa.2014.07.010

    Article  CAS  Google Scholar 

  17. M Fazlzadeh K Rahmani A Zarei H Abdoallahzadeh F Nasiri R Khosravi 2017 A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions Advanced Powder Technology 28 1 122 130 https://doi.org/10.1016/j.apt.2016.09.003

    Article  CAS  Google Scholar 

  18. MK Ghosh S Sahu I Gupta TK Ghorai 2020 Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves: Characterization, optical properties, CT-DNA binding and photocatalytic activity RSC Advances 10 37 22027 22035 https://doi.org/10.1039/D0RA03186K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. HJ Lee JY Song BS Kim 2013 Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity Journal of Chemical Technology & Biotechnology 88 11 1971 1977 https://doi.org/10.1002/jctb.4052

    Article  CAS  Google Scholar 

  20. S Yallappa J Manjanna MA Sindhe ND Satyanarayan SN Pramod K Nagaraja 2013 Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 110 108 115 https://doi.org/10.1016/j.saa.2013.03.005

    Article  CAS  Google Scholar 

  21. Anjum, S. M., & Riazunnisa, K. (2021). Fine ultra-small ruthenium oxide nanoparticle synthesis by using Catharanthus roseus and Moringa oleifera leaf extracts and their efficacy towards in vitro assays, antimicrobial activity and catalytic: adsorption kinetic studies using methylene blue dye. Journal of Cluster Science, 1-15. https://doi.org/10.1007/s10876-021-02037-0

  22. MP Patil GD Kim 2017 Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles Applied microbiology and biotechnology 101 1 79 92 https://doi.org/10.1007/s00253-016-8012-8

    Article  CAS  PubMed  Google Scholar 

  23. S Jafarirad M Mehrabi B Divband M Kosari-Nasab 2016 Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach Materials Science and Engineering: C 59 296 302 https://doi.org/10.1016/j.msec.2015.09.089

    Article  CAS  Google Scholar 

  24. M Saravanan S Arokiyaraj T Lakshmi A Pugazhendhi 2018 Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria Microbial pathogenesis 117 68 72 https://doi.org/10.1016/j.micpath.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  25. T Singh K Jyoti A Patnaik A Singh R Chauhan SS Chandel 2017 Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus Journal of Genetic Engineering and Biotechnology 15 1 31 39 https://doi.org/10.1016/j.jgeb.2017.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  26. K Murugan M Roni C Panneerselvam U Suresh R Rajaganesh R Aruliah G Benelli 2018 Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera Physiological and Molecular Plant Pathology 101 202 213 https://doi.org/10.1016/j.pmpp.2017.02.004

    Article  CAS  Google Scholar 

  27. JR Peralta-Videa Y Huang JG Parsons L Zhao L Lopez-Moreno JA Hernandez-Viezcas JL Gardea-Torresdey 2016 Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnology for Environmental Engineering 1 1 1 29 https://doi.org/10.1007/s41204-016-0004-5

    Article  Google Scholar 

  28. PR Gandhi C Jayaseelan RR Mary D Mathivanan SR Suseem 2017 Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites Experimental parasitology 181 47 56 https://doi.org/10.1016/j.exppara.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  29. S Jeyabharathi K Kalishwaralal K Sundar A Muthukumaran 2017 Synthesis of zinc oxide nanoparticles (ZnONPs) by aqueous extract of Amaranthus caudatus and evaluation of their toxicity and antimicrobial activity Materials Letters 209 295 298 https://doi.org/10.1016/j.matlet.2017.08.030

    Article  CAS  Google Scholar 

  30. SA Khan S Kanwal K Rizwan S Shahid 2018 Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme Microbial pathogenesis 125 366 384 https://doi.org/10.1016/j.micpath.2018.09.041

    Article  CAS  PubMed  Google Scholar 

  31. T Bhuyan K Mishra M Khanuja R Prasad A Varma 2015 Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications Materials Science in Semiconductor Processing 32 55 61 https://doi.org/10.1016/j.mssp.2014.12.053

    Article  CAS  Google Scholar 

  32. CM Magdalane K Kaviyarasu A Raja MV Arularasu GT Mola AB Isaev M Maaza 2018 Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: Investigation of cytotoxicity, antibacterial growth inhibition using catalyst Journal of Photochemistry and Photobiology B: Biology 185 275 282 https://doi.org/10.1016/j.jphotobiol.2018.06.011

    Article  CAS  Google Scholar 

  33. L Kaliraj JC Ahn EJ Rupa S Abid J Lu DC Yang 2019 Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination Journal of Photochemistry and Photobiology B: Biology 199 111588 https://doi.org/10.1016/j.jphotobiol.2019.111588

    Article  CAS  Google Scholar 

  34. J Ali R Irshad B Li K Tahir A Ahmad M Shakeel ZUH Khan 2018 Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications Journal of Photochemistry and Photobiology B: Biology 183 349 356 https://doi.org/10.1016/j.jphotobiol.2018.05.006

    Article  CAS  Google Scholar 

  35. S Vijayakumar C Krishnakumar P Arulmozhi S Mahadevan N Parameswari 2018 Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC Microbial pathogenesis 116 44 48 https://doi.org/10.1016/j.micpath.2018.01.003

  36. G Rajakumar M Thiruvengadam G Mydhili T Gomathi IM Chung 2018 Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities Bioprocess and biosystems engineering 41 1 21 30 https://doi.org/10.1007/s00449-017-1840-9

    Article  CAS  PubMed  Google Scholar 

  37. CS Ezeonu CM Ejikeme 2016 Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods New Journal of Science https://doi.org/10.1155/2016/5601327

    Article  Google Scholar 

  38. Pavithra, K., & Vadivukkarasi, S. (2015). Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Science and Human Wellness, 4(1), 42–46. https://doi.org/10.1016/j.fshw.2015.02.001.

    Article  Google Scholar 

  39. C Perez 1990 Antibiotic assay by agar-well diffusion method Acta Biol Med Exp 15 113 115

    Google Scholar 

  40. K Balan W Qing Y Wang X Liu T Palvannan Y Wang Y Zhang 2016 Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract Rsc Advances 6 46 40162 40168 https://doi.org/10.1039/C5RA24391B

    Article  CAS  Google Scholar 

  41. R Visvanathan C Jayathilake R Liyanage R Sivakanesan 2019 Applicability and reliability of the glucose oxidase method in assessing α-amylase activity Food chemistry 275 265 272 https://doi.org/10.1016/j.foodchem.2018.09.114

    Article  CAS  PubMed  Google Scholar 

  42. SK Chandraker MK Ghosh M Lal TK Ghorai R Shukla 2019 Colorimetric sensing of Fe 3+ and Hg 2+ and photocatalytic activity of green synthesized silver nanoparticles from the leaf extract of Sonchus arvensis L New Journal of Chemistry 43 46 18175 18183 https://doi.org/10.1039/C9NJ01338E

    Article  CAS  Google Scholar 

  43. J Ramyadevi K Jeyasubramanian A Marikani G Rajakumar AA Rahuman T Santhoshkumar S Marimuthu 2011 Copper nanoparticles synthesized by polyol process used to control hematophagous parasites Parasitology research 109 5 1403 1415 https://doi.org/10.1007/s00436-011-2387-3

    Article  PubMed  Google Scholar 

  44. Y Abboud T Saffaj A Chagraoui A Bouari El K Brouzi O Tanane B Ihssane 2014 Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CuONPs) produced using brown alga extract (Bifurcaria bifurcata) Applied Nanoscience 4 5 571 576 https://doi.org/10.1007/s13204-013-0233-x

    Article  CAS  Google Scholar 

  45. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 7(2), 184–192. https://doi.org/10.1016/j.nano.2010.10.001

  46. S Vijayakumar B Vaseeharan B Malaikozhundan M Shobiya 2016 Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications Biomedicine & Pharmacotherapy 84 1213 1222 https://doi.org/10.1016/j.biopha.2016.10.038

    Article  CAS  Google Scholar 

  47. G Sharma S Dang S Gupta R Gabrani 2018 Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101 Medical Principles and Practice 27 2 186 192 https://doi.org/10.1159/000487306

    Article  PubMed  PubMed Central  Google Scholar 

  48. NP Devi SK Das RK Sanjukta SG Singh 2019 A comparative study on antibacterial activity of integumentary extract of selected freshwater fish Species and Neem extracts against gram-positive and gram-negative bacteria Journal of Entomology and Zoology Studies 7 2 1352 1355

    Google Scholar 

  49. D Rehana D Mahendiran RS Kumar AK Rahiman 2017 In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts Bioprocess and biosystems engineering 40 6 943 957 https://doi.org/10.1007/s00449-017-1758-2

    Article  CAS  PubMed  Google Scholar 

  50. Badole, S., Patel, N., Bodhankar, S., Jain, B., & Bhardwaj, S. (2006). Antihyperglycemic activity of aqueous extract of leaves of Cocculus hirsutus (L.) Diels in alloxan-induced diabetic mice. Indian journal of pharmacology, 38(1), 49. https://doi.org/10.4103/0253-7613.19853

  51. Sangameswaran, B., & Jayakar, B. (2007). Anti-diabetic and spermatogenic activity of Cocculus hirsutus (L) Diels. African Journal of Biotechnology, 6(10). https://doi.org/10.4314/ajb.v6i10.57403

  52. Sarkar, T., Bharadwaj, K. K., Salauddin, M., Pati, S., & Chakraborty, R. (2021). Phytochemical characterization, antioxidant, anti-inflammatory, anti-diabetic properties, molecular docking, pharmacokinetic profiling, and network pharmacology analysis of the major phytoconstituents of raw and differently dried Mangifera indica (Himsagar cultivar): An in vitro and in silico investigations. Applied Biochemistry and Biotechnology, 1-38. https://doi.org/10.1007/s12010-021-03669-8

  53. V Vinotha A Iswarya R Thaya M Govindarajan NS Alharbi S Kadaikunnan B Vaseeharan 2019 Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties Journal of Photochemistry and Photobiology B: Biology 197 111541 https://doi.org/10.1016/j.jphotobiol.2019.111541

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research article is from the collaboration between Yogi Vemana University Kadapa, Qassim University, and Universiti Malaysia Kelantan. Many thanks to laboratory assistant that involved in this project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.R. and S.A.; Formal analysis, S.A.; Methodology, S.A., N.R., H.K., and K.R.; Supervision, K.R.; Validation, K.R., N.R., and S.A.; Writing, N.R., S.A.M., and A.M.; writing—review and editing, K.R., H.K., S.A.M., A.M., and Z.A.K. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Khateef Riazunnisa or Arifullah Mohammed.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All authors have consent to publish the paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

CH-CuNPs were synthesized by using C. hirsutus leaf extract.

CH-CuNPs were characterized by employing UV spectroscopy, FTIR, SEM, and EDX.

CH-CuNPs can be exploited as a good source for green synthesis of CuNPs, having potent in vitro antibacterial, antioxidant, and anti-diabetic properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameena, S., Rajesh, N., Anjum, S.M. et al. Antioxidant, Antibacterial, and Anti-diabetic Activity of Green Synthesized Copper Nanoparticles of Cocculus hirsutus (Menispermaceae). Appl Biochem Biotechnol 194, 4424–4438 (2022). https://doi.org/10.1007/s12010-022-03899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03899-4

Keywords

Navigation