Skip to main content

Advertisement

Log in

Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bio-mediated synthesis of zinc oxide nanoparticles (ZnO NPs) was carried out by utilizing the reducing and capping potential of Andrographis paniculata leaf extract. The capped ZnO NPs were characterized using UV–Vis, XRD, FTIR, SEM, TEM and SAED analyses. FTIR analysis suggested the role of phenolic compounds, terpenoids, and proteins of A. paniculata leaf extract, in nucleation and stability of ZnO NPs. XRD pattern compared with the standard confirmed spectrum of zinc oxide particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values. SEM and TEM analysis of ZnO NPs reveals those spherical and hexagonal shapes and the sizes at the range of 96–115 and 57 ± 0.3 nm, respectively. The synthesized nanoparticles possess strong biological activities regarding anti-oxidant, anti-diabetic, and anti-inflammatory potentials which could be utilized in various biological applications by the cosmetic, food and biomedical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilaki M (2010) Biosynthesis of silver nanoparticles using plant extracts. J Biol Sci 10(5):465–467

    Article  CAS  Google Scholar 

  2. Raveendran P, Fu J, Scott L (2003) Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  3. Sahu AN (2013) Nanotechnology in herbal medicines and cosmetics. Int Res Ayurveda Pharma 4(3):472–474

    Article  Google Scholar 

  4. Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green synthesis of zinc oxide nanoparticles using flower extract Cassia Auriculata. J Nanosci Nanotechnol 1(1):41–45

    Google Scholar 

  5. Rouhi J, Mahmud S, Naderi N, Ooi CR, Mahmood MR (2013) Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res Lett 8:364

    Article  Google Scholar 

  6. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  Google Scholar 

  7. Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B 128:78–84

    Article  CAS  Google Scholar 

  8. Kajbafvala A, Ghorbani H, Paravar A, Samberg JP, Kajbafvala E, Sadrnezhaad SK (2012) Effects of morphology on photocatalytic performance of zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct 51(4):512–522

    Article  CAS  Google Scholar 

  9. Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 3:30. doi:10.1186/2228-5326-3-30

    Article  Google Scholar 

  10. Sundrarajan M, Ambika S, Bharathi K (2015) Plant extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against bacteria. Adv Powder Technol 26:1294–1299

    Article  CAS  Google Scholar 

  11. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Adaikala Raj G (2015) Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 26:1639–1651

    Article  CAS  Google Scholar 

  12. Shekhawat MS, Ravindran CP, Manokari M (2015) A green approach to synthesize the zinc oxide nanoparticles using aqueous extracts of Ficus benghalensis L. Int J Biosci Agric Technol 6:1–5

    Google Scholar 

  13. Mishra V, Sharma R (2015) Green synthesis of zinc oxide nanoparticles using fresh peels extract of Punica granatum and its antimicrobial activities. Int J Pharma Res Health Sci 3:694–699

    CAS  Google Scholar 

  14. Dobrucka R, Dlugaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Bio Sci 23:517–523

    Article  CAS  Google Scholar 

  15. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, antibacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003

    Article  CAS  Google Scholar 

  16. Manokari M, Shekhawat MS (2016) Biogenesis of zinc oxide nanoparticles using Couroupita guianensis Aubl. extracts—a green approach. World Sci News 29:135–145

    Google Scholar 

  17. Akbar S (2011) Andrographis paniculata: a review of pharmacological activities and clinical effects. Alter Med Rev 16:66–77

    Google Scholar 

  18. Kabir MH, Hasan N, Rahman MM et al (2014) A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh. J Ethnobiol Ethnomed 10:19

    Article  Google Scholar 

  19. Li W, Xu X, Zhang H et al (2007) Secondary metabolites from Andrographis paniculata. Chem Pharma Bull 55:455–458

    Article  CAS  Google Scholar 

  20. Harjotaruno S, Widyawaruyantil A, Zaini NC (2008) Apoptosis inducing effect of andrographolide on TD-47 human breast cancer cell line. Afr J Tradit Complement 4:345–351

    Article  Google Scholar 

  21. Gupta S, Yadava JNS, Tandon JS (1993) Antisecretory (antidiarrhoeal) activity of Indian medicinal plants against Escherichia coli enterotoxin-induced secretion in rabbit and guinea pig ileal loop models. Int J Pharma 31:198–204

    Article  Google Scholar 

  22. Tang W, Eisenbrand G (1992) Andrographis paniculata (Burm. f.) Nees. In: Tang W, Eisenbrand G (eds) Chinese drugs of plant origin chemistry, pharmacology, and use in radiational and modern medicine. Springer, Berlin, pp 97–103

    Chapter  Google Scholar 

  23. Nanduri S, Nyavanandi VK, Thunuguntla SSR et al (2004) Synthesis and structure–activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorg Med Chem Lett 14:4711–4717

    Article  CAS  Google Scholar 

  24. Subramanian R, Asmawi MZ, Sadikun A (2008) In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Polonica 55:391–398

    CAS  Google Scholar 

  25. Sheeja K, Shihab PK, Kuttan G (2006) Antioxidant and anti-inflammatory activities of the plant Andrographis paniculata nees. Immunopharmacol Immunotoxicol 28:129–140

    Article  CAS  Google Scholar 

  26. Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M (2005) Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type 1. Phytother Res 19(12):1069–1070

    Article  CAS  Google Scholar 

  27. Akowuah GA, Zhari I, Mariam A (2008) Analysis of urinary andrographolides and antioxidant status after oral administration of Andrographis paniculata leaf extract in rats. Food Chem Toxicol 46(12):3616–3620

    Article  CAS  Google Scholar 

  28. Tan BKH, Zhang A (2004) Andrographis paniculata and the cardiovascular system. In: Packe L, Ong CN, Halliwell B (eds) Herbal and traditional medicine, biomolecular and clinical aspects, vol 14. CRC Press, Boca Raton, pp 441–456

    Google Scholar 

  29. Visen PKS, Saraswat B, Vuksan V, Dhawan BN (2007) Effect of andrographolide on monkey hepatocytes against galactosamine induced cell toxicity: an in vitro study. J Complement Integr Med 4:10

    Article  Google Scholar 

  30. Iruretagoyen MI, Tobar JA, González PA et al (2005) Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Ther 312(1):366–372

    Article  Google Scholar 

  31. Akbarsha MA, Murugaian P (2000) Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa. Phytother Res 14(6):432–435

    Article  CAS  Google Scholar 

  32. Lin FL, Wu SJ, Lee SC, Ng LT (2009) Antioxidant, antioedema and analgesic activities of Andrographis paniculata extracts and their active constituent andrographolide. Phytother Res 23(7):958–964

    Article  CAS  Google Scholar 

  33. Murali M, Mahendra C, Nagabhushan Rajashekar N, Sudarshana MS, Raveesha KA, Amruthesh KN (2017) Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.—an endemic species. Spectrochim Acta A Mol Biomol Spectrosc 15(179):104–109

    Article  Google Scholar 

  34. Tran PD, Batabyal SK, Pramana SS, Barber J, Wong LH, Loo SCJ (2012) A cuprous oxide-reduced graphene oxide (Cu2O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale 4:3875–3878

    Article  CAS  Google Scholar 

  35. Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  36. Patel Rajesh M, Patel Natvar J (2011) In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. J Adv Pharm Educ Res 1:52–68

    Google Scholar 

  37. Sekar N, Sangeetha R (2014) Amylase inhibitory potential of silver nanoparticles biosynthesized using Breynia retusa leaf extract. World J Pharma Res 3(7):1055–1066

    CAS  Google Scholar 

  38. Karthik K, Bharath R, Kumar P, Priya VR, Kumar SK, Rathore RSB (2013) Evaluation of anti-inflammatory activity of Canthium parviflorum by in vitro method. Ind J Res Pharm Biotechnol 1(5):729–731

    Google Scholar 

  39. Gupta A, Srivastava P, Bahadur L, Amalnerkar DP, Chauhan R (2015) Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes. Appl Nanosci 5:787–794

    Article  CAS  Google Scholar 

  40. Oladiran AA, Olabisi IAM (2013) Synthesis and characterization of ZnO nanoparticles with zinc chloride as zinc source. Asian J Nat Appl Sci 2:41–44

    Google Scholar 

  41. Vimala K, Sundarraj S, Paulpandi M (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49:160–172

    Article  CAS  Google Scholar 

  42. Senthilkumar SR, Sivkumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6(6):461–465

    Google Scholar 

  43. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566

    Article  CAS  Google Scholar 

  44. ShivShankar S, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 8:1627–1631

    Article  Google Scholar 

  45. Tas AC, Majewski PJ, Aldinger F (2000) Chemical preparation of pure and strontium and/0r magnesium doped lanthanum gallata powders. J Am Ceram Soc 83(12):2954–2960

    Article  CAS  Google Scholar 

  46. Wahab R, Ansari SG, KimYS Dar MA, Shin HS (2008) Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J Alloys Compd 461:66–71 (WHO 2014, malaria, fact sheet no. 94)

    Article  CAS  Google Scholar 

  47. Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci 345:329–336

    Article  CAS  Google Scholar 

  48. Shah MA (2008) Formation of zinc oxide nanoparticles by the reaction of zinc metal with methanol at very low temperature. Afr Phys Rev 2:0011

    Google Scholar 

  49. Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 131:16–18

    Article  Google Scholar 

  50. Yun SW, Shin YJ, Cho SG (1998) Somteromg Behavior and Electrical Characteristics of ZnO Variators Prepared by Pechini Process. J Kor Ceram Soc 35(5):498

    CAS  Google Scholar 

  51. Ryu JH, Lim CS, Auh KH (2002) Synthesis of ZnWO4 nanopowders by polymerized complex method. J Kor Ceram Soc 39(3):321

    Article  CAS  Google Scholar 

  52. Vidhu VK, Philip D (2015) Biogenic synthesis of SnO2 nanoparticles: evaluation of antibacterial and antioxidant activities. Spectrochim Acta A 134:372

    Article  CAS  Google Scholar 

  53. Madan HR, Sharma SC, Dayabhanu U, Suresh D, Vidya YS et al (2015) Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photo luminescent and photo catalytic properties. Spectrochim Acta Part A Mol Biomol Spectrosc 152:404–416

    Article  Google Scholar 

  54. Singh BN, Rawat AK, Khan W, Naqvi AH, Singh BR (2014) Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS One 9:e106937

    Article  Google Scholar 

  55. Halliwell B (1997) Antioxidants and human disease: a general introduction. Nutr Rev 55(1 Pt 2):S44–S49

    CAS  Google Scholar 

  56. Egefjord L, Petersen AB, Bak AM, Rungby J (2010) Zinc, alpha cells and glucagon secretion. Curr Diabetes Rev 6(1):52–57

    Article  CAS  Google Scholar 

  57. Nagajyothi PC, Ju S, Jun I, Sreekanth TVM, Joong K, Mook H (2015) Biology antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B Biol 146:10–17

    Article  CAS  Google Scholar 

  58. Thatoi P, Kerry RG, Gouda S, Das G et al (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol 163:311–318

    Article  CAS  Google Scholar 

  59. Liu HL, Dai SA, Fu KY, Hsu SH (2010) Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int J Nanomed 5:1017–1028

    CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the KU-Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thandapani Gomathi or Ill-Min Chung.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajakumar, G., Thiruvengadam, M., Mydhili, G. et al. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng 41, 21–30 (2018). https://doi.org/10.1007/s00449-017-1840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1840-9

Keywords

Navigation