Skip to main content
Log in

Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis using β-mannanase and α-galactosidase is necessary to produce low molecular weight galactomannan (LMW-GM) from galactomannans (GM) in the leguminous seeds. In this study, different ratios of avicel and melibiose were used as the inductors (carbon sources) for Trichoderma reesei to metabolize the enzyme cocktail containing β-mannanase and α-galactosidase using one-pot fermentation technology. The obtained enzyme cocktail was used to efficiently produce LMW-GM from GM in Sesbania cannabina seeds. Results showed that 15 g/L avicel and 10 g/L melibiose were the best carbon sources to prepare enzyme cocktail containing β-mannanase and α-galactosidase with activities of 3.69 ± 0.27 U/mL and 0.51 ± 0.02 U/mL, respectively. Specifically, melibiose could effectively induce the metabolite product of α-galactosidase by T. reesei, which showed good performance in degrading the galactose substituent from GM backbone. The degradation of galactose alleviated the spatial site-blocking effect for enzymatic hydrolysis by β-mannanase and improved the yield of LMW-GM. This research can lay the foundation for the industrial technology amplification of LMW-GM production for further application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data and material are available upon reasonable request to the corresponding author.

Code Availability

Not applicable.

Abbreviations

LMW-GM:

low molecular weight galactomannans

GM:

galactomannans

T. reesei :

Trichoderma reesei

LMWP:

low molecular weight polysaccharides

pNPM:

β-D-Mannopyranoside,4-nitrophenyl

pNPG:

p-nitrophenyl-β-D-galactopyranoside

LBG:

locust bean gum

DNS:

3,5-dinitrosalicylic acid

PNP:

p-nitrophenol spectral profile

GMOS:

galactomannan oligosaccharides

HPSEC:

high-performance size exclusion chromatography

Mw:

weight average molecular weight

Mn:

number average molecular weight

PDI:

polydispersity index

DPw:

weight average degree of polymerization

References

  1. Li, R., Zhu, C., Bian, X., Jia, X., Tang, N., & Cheng, Y. (2020). An antioxidative galactomannan extracted from Chinese Sesbania cannabina enhances immune activation of macrophage cells. Food Function, 11, 10635–10644. https://doi.org/10.1039/d0fo02131h

    Article  CAS  PubMed  Google Scholar 

  2. Li, R., Tang, N., Jia, X., Xu, Y., & Cheng, Y. (2021). Antidiabetic activity of galactomannan from Chinese Sesbania cannabina and its correlation of regulating intestinal microbiota. Journal of Functional Foods, 83, 104530. https://doi.org/10.1016/j.jff.2021.104530

    Article  CAS  Google Scholar 

  3. Zhou, M., Yang, L., Yang, S., Zhao, F., Xu, L., & Yong, Q. (2018). Isolation, characterization and in vitro anticancer activity of an aqueous galactomannan from the seed of Sesbania cannabina. International Journal of Biological Macromolecules, 113, 1241–1247. https://doi.org/10.1016/j.ijbiomac.2018.03.067

    Article  CAS  PubMed  Google Scholar 

  4. Ji, H. Y., Yu, J., & Liu, A. J. (2019). Structural characterization of a low molecular weight polysaccharide from Grifola frondosa and its antitumor activity in H22 tumor-bearing mice. Journal of Functional Foods, 61, 103472. https://doi.org/10.1016/j.jff.2019.103472

    Article  CAS  Google Scholar 

  5. Liu, W., Wang, H., Pang, X., Yao, W., & Gao, X. (2010). Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. International Journal of Biological Macromolecules, 46, 451–457. https://doi.org/10.1016/j.ijbiomac.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  6. Tao, Y., Ma, J., Huang, C., Lai, C., Ling, Z., & Yong, Q. (2022). The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. International Journal of Biological Macromolecules, 205, 530–538. https://doi.org/10.1016/j.ijbiomac.2022.02.122

    Article  CAS  PubMed  Google Scholar 

  7. Tel-Çayan, G., Muhammad, A., Deveci, E., Duru, M. E., & Öztürk, M. (2020). Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms. International Journal of Biological Macromolecules, 165, 2395–2403. https://doi.org/10.1016/j.ijbiomac.2020.10.040

    Article  CAS  PubMed  Google Scholar 

  8. Perera, N., Yang, F. L., Lu, Y. T., Li, L. H., Hua, K. F., & Wu, S. H. (2018). Antrodia cinnamomea galactomannan elicits immuno-stimulatory activity through toll-like receptor 4. International Journal of Biological Sciences, 14(10), 1378–1388. https://doi.org/10.7150/ijbs.24564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, E., Chen, D., Yu, B., Huang, Z., Mao, X., Zheng, P. … He, J. (2020). Manno-oligosaccharide attenuates inflammation and intestinal epithelium injury in weaned pigs upon enterotoxigenic Escherichia coli K88 challenge. 126 (7), 993–1002. https://doi.org/10.1017/S0007114520004948

  10. Hlalukana, N., Magengelele, M., Malgas, S., & Pletschke, B. I. (2021). Enzymatic conversion of mannan-rich plant waste biomass into prebiotic mannooligosaccharides. Foods, 10, 2010. https://doi.org/10.3390/foods10092010

  11. Andreani, E. S., & Karboune, S. (2020). Comparison of enzymatic and microwave-assisted alkaline extraction approaches for the generation of oligosaccharides from American Cranberry (Vaccinium macrocarpon) Pomace. Journal of Food Science, 85, 2443–2451. https://doi.org/10.1111/1750-3841.15352

    Article  CAS  Google Scholar 

  12. Vera, C., Illanes, A., & Guerrero, C. (2020). Enzymatic production of prebiotic oligosaccharides. Current Opinion In Food Science, 37, 160–170. https://doi.org/10.1016/j.cofs.2020.10.013

    Article  Google Scholar 

  13. Ramirez, C., Temelli, F., & Saldaa, M. (2021). Production of pea hull soluble fiber-derived oligosaccharides using subcritical water with carboxylic acids. The Journal of Supercritical Fluids, 178, 105349. https://doi.org/10.1016/j.supflu.2021.105349

    Article  CAS  Google Scholar 

  14. Volford, B., Varga, M., Szekeres, A., Kotogán, A., Nagy, G., Vágvölgyi, C. ... Takó, M. (2021). β-mannanase-producing isolates in mucoromycota: screening, enzyme production, and applications for functional oligosaccharide synthesis. Journal of Fungi, 7, 229. https://doi.org/10.3390/jof7030229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gong, G., Zhao, J., Wang, C., Wei, M., Dang, T., Deng, Y. ... Wang, Z. (2018). Structural characterization and antioxidant activities of the degradation products from Porphyra haitanensis polysaccharides. Process Biochemistry, 74, 185–193. https://doi.org/10.1016/j.procbio.2018.05.022

    Article  CAS  Google Scholar 

  16. Chen, S., Liu, H., Yang, X., Li, L., Qi, B., Hu, X. … Pan, C. (2020). Degradation of sulphated polysaccharides from Grateloupia livida and antioxidant activity of the degraded components. International Journal of Biological Macromolecules, 156, 660–668. https://doi.org/10.1016/j.ijbiomac.2020.04.108

    Article  CAS  PubMed  Google Scholar 

  17. Magengelele, M., Hlalukana, N., Malgas, S., Rose, S. H., Zyl, W. H., & Pletschke, B. I. (2021). Production and in vitro evaluation of prebiotic manno-oligosaccharides prepared with a recombinant Aspergillus niger endo-mannanase, Man26A. Enzyme and Microbial Technology, 150, 109893. https://doi.org/10.1016/j.enzmictec.2021.109893

    Article  CAS  PubMed  Google Scholar 

  18. Jian, H. L., Zhu, L. W., Zhang, W. M., Sun, D. F., & Jiang, J. X. (2013). Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinensis galactomannan gum. International Journal of Biological Macromolecules, 55, 282–288. https://doi.org/10.1016/j.ijbiomac.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  19. Xu, W., Han, M., Zhang, W., Zhang, F., Lei, F., Wang, K., & Jiang, J. (2021). Production of manno-oligosaccharide from Gleditsia microphylla galactomannan using acetic acid and ferrous chloride. Food Chemistry, 346, 128844. https://doi.org/10.1016/j.foodchem.2020.128844

    Article  CAS  PubMed  Google Scholar 

  20. Xu, W., Han, M., Zhang, W., Tang, M., Zhang, F., & Jiang, J. (2022). Efficient and green production of manno-oligosaccharides from Gleditsia microphylla galactomannans using CO2 and solid acid in subcritical water. Lebensmittel-Wissenschaft & Technologie, 156113019. https://doi.org/10.1016/j.lwt.2021.113019

  21. Sun, J., Xu, F., & Lu, J. (2020). A glycoside hydrolase family 62 A-L-arabinofuranosidase from Trichoderma reesei and its applicable potential during mashing. Foods, 9, 356. https://doi.org/10.3390/foods9030356

    Article  CAS  PubMed Central  Google Scholar 

  22. Berlemont, R. (2017). Distribution and diversity of enzymes for polysaccharide degradation in fungi. Scientific Reports-UK, 7, 222. https://doi.org/10.1038/s41598-017-00258-w

    Article  CAS  Google Scholar 

  23. Tavares, C., Monteiro, S. R., Moreno, N., & Silva, J. A. L. (2005). Does the branching degree of galactomannans influence their effect on whey protein gelation? Colloids and Surfaces A, 270–271. https://doi.org/10.1016/j.colsurfa.2005.06.014

  24. Samkelo, M., Susan Van, D. J., & Brett, I. P. (2015). A review of the enzymatic hydrolysis of mannans and synergistic interactions between beta-mannanase, beta-mannosidase and alpha-galactosidase. World Journal of Microbiology and Biotechnology, 31, 1167–1175. https://doi.org/10.1007/s11274-015-1878-2

    Article  CAS  Google Scholar 

  25. Chu, Q., Li, X., Xu, Y., Wang, Z., Huang, J., Yu, S., & Qiang, Y. (2014). Functional cello-oligosaccharides production from the corncob residues of xylo-oligosaccharides manufacture. Process Biochemistry, 49, 1217–1222. https://doi.org/10.1016/j.procbio.2014.05.007

    Article  CAS  Google Scholar 

  26. Joint FAO/WHO Expert Committee on Food Additives, & World Health Organization. (1992). Evaluation of certain food additives and naturally occurring toxicants: thirty-ninth report of the Joint FAO. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/38637/WHO_TRS_832.pdf?sequence=1&isAllowed=y

  27. Nevalainen, H., Suominen, P., & Taimisto, K. (1994). On the safety of Trichoderma reesei. Journal of Biotechnology, 37, 193–200. https://doi.org/10.1016/0168-1656(94)90126-0

    Article  CAS  PubMed  Google Scholar 

  28. Pedersen, N. R., Tovborg, M., Farjam, A. S., & Pia, E. A. D. (2021). Multicomponent carbohydrase system from Trichoderma reesei: A toolbox to address complexity of cell walls of plant substrates in animal feed. PLoS One, 16, e0251556. https://doi.org/10.1371/journal.pone.0251556

    Article  CAS  Google Scholar 

  29. Druzhinina, I. S., & Kubicek, C. P. (2017). Genetic engineering of Trichoderma reesei cellulases and their production. Microbial Biotechnology, 10, 1485–1499. https://doi.org/10.1111/1751-7915.12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ellilä, S., Fonseca, L., Uchima, C., Cota, J., Goldman, G. H., Saloheimo, M. … Siika-Aho, M. (2017). Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnology for Biofuels, 10, 30. https://doi.org/10.1186/s13068-017-0717-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bischof, R. H., Ramoni, J., & Seiboth, B. (2016). Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 15, 106. https://doi.org/10.1186/s12934-016-0507-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, H., Gao, L., Xue, C., & Mao, X. (2020). Marine-polysaccharide degrading enzymes: Status and prospects. Comprehensive Reviews in Food Science and Food Safety, 19, 2767–2796. https://doi.org/10.1111/1541-4337.12630

    Article  CAS  PubMed  Google Scholar 

  33. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107, 256–261. https://doi.org/10.1016/j.jbiosc.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  34. Camila, P. F., Ilton, J. B., Fernanda, P. C., & Cristiane, S. F. (2020). β-Mannanase production using coffee industry waste for application in soluble coffee processing. Biomolecules, 10, 227. https://doi.org/10.3390/biom10020227

    Article  CAS  Google Scholar 

  35. Jørgensen, H., Eriksson, T., Börjesson, J., Tjerneld, F., & Olsson, L. (2003). Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology, 32(7), 851–861. https://doi.org/10.1016/s0141-0229(03)00056-5

    Article  Google Scholar 

  36. Tao, Y., Yang, L., Lai, C., Huang, C., Li, X., & Yong, Q. (2020). A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. Carbohydrate Polymers, 250, 116951. https://doi.org/10.1016/j.carbpol.2020.116951

    Article  CAS  PubMed  Google Scholar 

  37. Sharma, P., Sharma, S., Ramakrishna, G., Srivastava, H., & Gaikwad, K. (2020). A comprehensive review on leguminous galactomannans: structural analysis, functional properties, biosynthesis process and industrial applications. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1819196

    Article  PubMed  Google Scholar 

  38. Bhatia, S., Singh, A., Batra, N., & Singh, J. (2019). Microbial production and biotechnological applications of α-galactosidase. International Journal of Biological Macromolecules, 150, 1294–1313. https://doi.org/10.1016/j.ijbiomac.2019.10.140

    Article  CAS  PubMed  Google Scholar 

  39. Mathew, C. D., & Balasubramaniam, K. (1987). Mechanism of action of α-galactosidase. Phytochemistry, 26, 1299–1300. https://doi.org/10.1016/s0031-9422(00)81798-7

    Article  CAS  Google Scholar 

  40. Malgas, S., Dyk, S., & Pletschke, B. I. (2014). β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates. Enzyme and Microbial Technology, 70, 1–8. https://doi.org/10.1016/j.enzmictec.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  41. Yang, L., Shi, G., Tao, Y., Lai, C., Li, X., Zhou, M., & Yong, Q. (2021). The increase of incomplete degradation products of galactomannan production by synergetic hydrolysis of β-mannanase and α-galactosidase. Biotechnology and Applied Biochemistry, 193, 405–416. https://doi.org/10.1007/s12010-020-03430-7

    Article  CAS  Google Scholar 

  42. Kogo, T., Yoshida, Y., Koganei, K., Matsumoto, H., Watanabe, T., Ogihara, J., & Kasumi, T. (2017). Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresource Technology, 233, 67–73. https://doi.org/10.1016/j.biortech.2017.01.075

    Article  CAS  PubMed  Google Scholar 

  43. Shabalin, K. A., Kulminskaya, A. A., Savel’ev, A. N., Shishlyannikov, S. M., & Neustroev, K. N. (2002). Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides. Enzyme and Microbial Technology, 30, 231–239. https://doi.org/10.1016/s0141-0229(01)00482-3

    Article  CAS  Google Scholar 

  44. Arisan-Atac, I., Hodits, R., Kristufek, D., & Kubicek, C. P. (1993). Purification, and characterization of a β-mannanase of Trichoderma reesei C-30. Applied Microbiology and Biotechnology, 39, 58–62. https://doi.org/10.1007/BF00166849

    Article  CAS  Google Scholar 

  45. Tang, J., Qian, Z., & Wu, H. (2018). Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. Bioresource Technology, 268, 60–67. https://doi.org/10.1016/j.biortech.2018.07.128

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2016YFD0600803) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

CXH proposed the idea. BWY and YHT performed the experiments and wrote the manuscript. CHL and QY wrote and revised the manuscript. All the authors contributed to write the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang Yong.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 301 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Tao, Y., Huang, C. et al. Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds. Appl Biochem Biotechnol 194, 3016–3030 (2022). https://doi.org/10.1007/s12010-022-03891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03891-y

Keywords

Navigation