Skip to main content
Log in

Metformin-Derived Water-Soluble Cobalt Complexes: Thermal, Spectroscopic, DNA Interaction, and Molecular Docking Studies

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Novel three water-soluble cobalt (II) complexes of type [Co(metf)(o-phen)2]Cl2 (1), [Co(metf)(opda)2]Cl2 (2), and [Co(metf)(2–2′bipy)2]Cl2 (3) (Metf, metformin; o-phen, ortho-phenanthroline; opda, ortho-phenylenediamine; 2,2′-bipy, 2,2′-bipyridine) were synthesized and characterized by various analytical and spectral techniques. Based on these studies, octahedral geometry is assigned to these complexes. The stability of the complexes has been calculated from quantum chemical parameters using HOMO–LUMO energies. Thermal degradation pattern of the compounds was studied and Coats-Redfern method is used to determine kinetic parameters for complexes 1, 2, and 3 from thermal studies. The DNA interaction of these complexes was investigated by absorption, emission, and viscosity studies. From the spectral data, it was concluded that the complexes bind to DNA through groove mode of binding. The intrinsic binding constants (Kb) from absorption spectroscopy were 2.49 × 104, 2.48 × 104, and 2.64 × 104 M−1 for 1, 2, and 3, respectively, and Stern–Volmer quenching constants (Ksv) from emission spectroscopy were 0.21, 0.20, and 0.13, respectively. These complexes were screened for nuclease activity of pUC19 DNA, in the presence of H2O2. Discovery studio 2.1 software was used to evaluate binding affinity and interaction pattern of complexes with B-DNA receptor protein and the maximum dock score is seen for complex 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Zhao, P., Zhai, S., Dong, J., Gao, L., Liu, X., Wang, L., Kong, J., & Li, L. (2018). Synthesis, Structure, DNA Interaction, and SOD Activity of Three Nickel(II) Complexes Containing L-Phenylalanine Schiff Base and 1,10-Phenanthroline. Bioinorganic Chemistry and Applications, 2018, 8478152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Liu, H., Li, L., Guo, Q., Dong, J., & Li, J. (2013). Synthesis, crystal structure, DNA- and albumin-binding properties of a chromium(III) complex with 1,10-phenanthroline and a Schiff base derived from glycine. Transition Metal Chemistry, 38(4), 441–448.

    Article  CAS  Google Scholar 

  3. Li, L., Guo, Q., Dong, J., Xu, T., & Li, J. (2013). DNA binding, DNA cleavage and BSA interaction of a mixed-ligand copper(II) complex with taurine Schiff base and 1,10-phenanthroline. Journal of Photochemistry and Photobiology B: Biology, 125, 56–62.

    Article  CAS  Google Scholar 

  4. Tabassum, S., Ahmad, M., Afzal, M., Zaki, M., & Bharadwaj, P. K. (2014). Synthesis and structure elucidation of a copper(II) Schiff-base complex: In vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies. Journal of Photochemistry and Photobiology B: Biology, 140, 321–331.

    Article  CAS  Google Scholar 

  5. Rehman, S. U., Sarwar, T., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Studying non-covalent drug–DNA interactions. Archives of Biochemistry and Biophysics, 576, 49–60.

    Article  PubMed  CAS  Google Scholar 

  6. Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19.

    Article  CAS  Google Scholar 

  7. Chen, K. K., & Anderson, R. C. (1947). The toxicity and general pharmacology of N1-p-chlorophenyl-N5-isopropyl biguanide. The Journal of Pharmacology and Experimental Therapeutics, 91(2), 157–160.

    CAS  PubMed  Google Scholar 

  8. Olar, R., Dogaru, A., Marinescu, D., & Badea, M. (2012). New vanadyl complexes with metformin derivatives as potential insulin mimetic agents. Journal of Thermal Analysis and Calorimetry, 110(1), 257–262.

    Article  CAS  Google Scholar 

  9. Olar, R., Badea, M., Cristurean, E., Parnau, C., & Marinescu, D. (2006). Thermalbehaviour of new N, N-dimethylbiguanide complexes having selective and effectiveantibacterial activity. Journal of Thermal Analysis and Calorimetry, 84(1), 53–58.

    Article  CAS  Google Scholar 

  10. Shahabadi, N., & Heidari, L. (2012). Binding studies of the antidiabetic drug, metformin to calf thymus DNA using multispectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 406–410.

    Article  CAS  Google Scholar 

  11. Shahabadi, N., & Heidari, L. (2014). Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 377–385.

    Article  CAS  Google Scholar 

  12. Chang, E. L., Simmers, C., & Knight, D. A. (2010). Cobalt Complexes as Antiviral and Antibacterial Agents. Pharmaceuticals, 3(6), 1711–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sastri, C. V., Eswaramoorthy, D., Giribabu, L., & Maiya, B. G. (2003). DNA interactions of new mixed-ligand complexes of cobalt(III) and nickel(II) that incorporate modified phenanthroline ligands. Journal of Inorganic Biochemistry, 94(1–2), 138–145.

    Article  CAS  PubMed  Google Scholar 

  14. Bordbar, M., Tabatabaee, M., Alizadeh-Nouqi, M., Mehri-Lighvan, Z., Khavasi, H. R., YeganehFaal, A., Fallahian, F., & Dolati, M. (2016). Synthesis, characterization, cytotoxic activity and DNA-binding studies of cobalt (II) mixed-ligand complex containing pyridine-2,6-dicarboxylate ion and 2-aminopyrimidine. Journal of the Iranian Chemical Society, 13(6), 1125–1132.

    Article  CAS  Google Scholar 

  15. Russell-Jones, G. J. (1998). Use of vitamin B12 conjugates to deliver protein drugs by the oral route. Critical Reviews in Therapeutic Drug Carrier Systems, 15(6), 557–586.

    Article  CAS  PubMed  Google Scholar 

  16. Vasantha, P., Kumar, B. S., Shekhar, B., & Anantha Lakshmi, P. V. (2018). Copper-metformin ternary complexes: Thermal, photochemosensitivity and molecular docking studies. Materials Science & Engineering, C: Materials for Biological Applications, 90, 621–633.

    Article  CAS  Google Scholar 

  17. Rajeshwari, K., Anantha Lakshmi, P. V., Archana, J., & Sumakanth, M. (2021). Ternary Cobalt(II), Nickel(II), and Copper(II) complexes containing metformin and ethylenediamine: Synthesis, characterization, thermal, in vitro DNA binding, in silico molecular docking, and in vivo antihyperglycemic studies. Applied Organometallic Chemistry, 35(2), e6100.

    Article  CAS  Google Scholar 

  18. Rajeshwari, K., Vasantha, P., Kumar, B. S., Shekhar, B., & Lakshmi, P. V. A. (2020). Water Soluble Nickel – metformin ternary complexes: Thermal, DNA binding and molecular docking studies. Applied Organometallic Chemistry, 34(3), e5351.

    Article  CAS  Google Scholar 

  19. Shekhar, B., Vasantha, P., Sathish Kumar, B., & Anantha Lakshmi, P. V. (2018). Multispectroscopic DNA interaction and Docking studies. Applied Organometallic Chemistry, 32(4), e4254.

    Article  CAS  Google Scholar 

  20. Shekhar, B., Vasantha, P., Sathish Kumar, B., Anantha Lakshmi, P. V., Ravi Kumar, V., & Satyanarayana, S. (2019). Chromium-metformin ternary complexes: Thermal, DNA interaction and Docking studies. Applied Organometallic Chemistry, 33(9), e5086.

    Google Scholar 

  21. Vasantha, P., Sathish Kumar, B., Shekhar, B., & Anantha Lakshmi, P. V. (2018). Cobalt(II)–metformin complexes containing α-diimine/α-diamine as auxiliary ligand: DNA binding properties. Applied Organometallic Chemistry, 32(2), e4074.

    Article  CAS  Google Scholar 

  22. Chennam, K. P., Ravi, M., Ushaiah, B., Srinu, V., Eslavath, R. K., & Devi, C. S. (2016). Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes. Journal of Fluorescence, 26(1), 189–205.

    Article  CAS  PubMed  Google Scholar 

  23. Dutta, R. L., & Syamal, A. (1993). Elements of magnetochemistry. Affiliated East-West Press.

    Google Scholar 

  24. Rambabu, A., Pradeep Kumar, M., Ganji, N., Daravath, S., & Shivaraj. (2020). DNA binding and cleavage, cytotoxicity and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1-((E)-(4-(trifluoromethoxy)phenylimino)methyl)naphthalen-2-ol Schiff base. Journal of Biomolecular Structure & Dynamics, 38(1), 307–316.

    Article  CAS  Google Scholar 

  25. Samy, R. (2018). Title: Synthesis, solvatochromism, photochemistry, DNA binding, photocleavage, cytotoxicity and molecular docking studies of a ruthenium(II) complex bearing photoactive subunit Synthesis, solvatochromism, photochemistry, DNA binding, photocleavage, cytotoxicity and molecular docking studies of a ruthenium(II) complex bearing photoactive subunit. Journal of Photochemistry and Photobiology, A: Chemistry, 356, 617–626.

    Article  CAS  Google Scholar 

  26. Srishailam, A., Kumar, Y. P., Venkat Reddy, P., Nambigari, N., Vuruputuri, U., Singh, S. S., & Satyanarayana, S. (2014). Cellular uptake, cytotoxicity, apoptosis, DNA-binding, photocleavage and molecular docking studies of ruthenium(II) polypyridyl complexes. Journal of Photochemistry and Photobiology B Biology, 132, 111–123.

  27. Ravi, C., Vuradi, R. K., Avudoddi, S., Yata, P. K., Putta, V. R., Srinivas, G., Merugu, R., & Satyanarayana, S. (2019). Synthesis, spectral studies, DNA binding, photocleavage, antimicrobial and anticancer activities of isoindol Ru(II) polypyridyl complexes. Nucleosides, Nucleotides & Nucleic Acids, 38(10), 788–806.

    Article  CAS  Google Scholar 

  28. Raman, N., Mahalakshmi, R., & Mitu, L. (2014). Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 355–364.

    Article  CAS  Google Scholar 

  29. Inci, D., Aydin, R., Vatan, O., Sevgi, T., Yilmaz, D., Zorlu, Y., Yerli, Y., Cosut, B., Demirkan, E., & Cinkilic, N. (2017). Synthesis and crystal structures of novel copper(II) complexes with glycine and substituted phenanthrolines: Reactivity towards DNA/BSA and in vitro cytotoxic and antimicrobial evaluation. JBIC Journal of Biological Inorganic Chemistry, 22(1), 61–85.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds. Part B, Part B. Hoboken: Wiley.

  31. Olar, R., Badea, M., Cristurean, E., Lazar, V., Cernat, R., & Balotescu, C. (2005). Thermal behavior, spectroscopic and biological characterization of Co(II), Zn(II), Pd(II) and Pt(II) complexes with N,N-dimethylbiguanide. Journal of Thermal Analysis and Calorimetry, 80(2), 451–455.

    Article  CAS  Google Scholar 

  32. Nalamolu, K. R., & Annapurna, M. (2007). Copper and Nickel complexes of Metformin: Synthesis, Characterization and Pharmacodynamic Evaluation. JASA, 3, 43–46

  33. Olar, R., Badea, M., Marinescu, D., Chifiriuc, M. C., Bleotu, C., Grecu, M. N., Iorgulescu, E. E., & Lazar, V. (2010). N, N-dimethylbiguanide complexes displaying low cytotoxicity as potential large spectrum antimicrobial agents. European Journal of Medicinal Chemistry, 45(7), 3027–3034.

    Article  CAS  PubMed  Google Scholar 

  34. Reddy, P. R., Rajeshwar, S., & Satyanarayana, B. (2016). Synthesis, characterization of new copper (ii) Schiff base and 1,10 phenanthroline complexes and study of their bioproperties. Journal of Photochemistry and Photobiology, B: Biology, 160, 217–224.

    Article  CAS  Google Scholar 

  35. Reddy, P. R., Raju, N., Manjula, P., & Reddy, K. V. (2007). Synthesis and DNA binding/cleavage of mononuclear copper(II) phenanthroline/bipyridine proline complexes. Chemistry & Biodiversity, 4(7), 1565–1577.

    Article  CAS  Google Scholar 

  36. Kavitha, N., & Anantha Lakshmi, P. V. (2017). Synthesis, characterization and thermogravimetric analysis of Co(II), Ni(II), Cu(II) and Zn(II) complexes supported by ONNO tetradentate Schiff base ligand derived from hydrazino benzoxazine. Journal of Saudi Chemical Society, 21, S457–S466.

    Article  CAS  Google Scholar 

  37. Singh, K., Kumar, Y., Puri, P., Sharma, C., & Aneja, K. R. (2012). Thermal, Spectral, Fluorescence, and Antimicrobial Studies of Cobalt, Nickel, Copper, and Zinc Complexes Derived from 4-[(5-Bromo-thiophen-2-ylmethylene)-amino]-3-mercapto-6-methyl-5-oxo-[1,2,4]triazine. International Journal of Inorganic Chemistry, 2012, 873232.

    Google Scholar 

  38. Alaghaz, A. N., & Ammar, R. A. (2010). New dimeric cyclodiphosph(V)azane complexes of Cr(III), Co(II), Ni(II), Cu(II), and Zn(II): Preparation, characterization and biological activity studies. European Journal of Medicinal Chemistry, 45(4), 1314–1322.

    Article  CAS  PubMed  Google Scholar 

  39. Muniyandi, V., Pravin, N., Subbaraj, P., & Raman, N. (2016). Persistent DNA binding, cleavage performance and eco-friendly catalytic nature of novel complexes having 2-aminobenzophenone precursor. Journal of Photochemistry and Photobiology, B: Biology, 156, 11–21.

    Article  CAS  Google Scholar 

  40. Kavitha, B., Sravanthi, M., & Saritha Reddy, P. (2019). DNA interaction, docking, molecular modelling and biological studies of o-Vanillin derived Schiff base metal complexes. Journal of Molecular Structure, 1185, 153–167.

    Article  CAS  Google Scholar 

  41. Figgis, B. N. (1966). Introduction to ligand fields. Wiley.

    Google Scholar 

  42. Radha, V. P., Chitra, S., Jonekirubavathi, S., Chung, I.-M., Kim, S.-H., & Prabakaran, M. (2020). Transition metal complexes of novel binuclear Schiff base derived from 3,3′-diaminobenzidine: Synthesis, characterization, thermal behavior, DFT, antimicrobial and molecular docking studies. Journal of Coordination Chemistry, 73(6), 1009–1027.

    Article  CAS  Google Scholar 

  43. Kavitha, N., & Anantha Lakshmi, P. V. (2019). Transition metal complexes supported by ONNN/ONNS bis-bidentate benzoxazine Schiff base: Synthesis, characterization, geometry optimization and non-isothermal kinetic parameters. Journal of Molecular Structure, 1176, 798–814.

    Article  CAS  Google Scholar 

  44. Coats, A. W., & Redfern, J. P. (1964). Kinetic Parameters from Thermogravimetric Data. Nature, 201(4914), 68–69.

    Article  CAS  Google Scholar 

  45. Shahabadi, N., Abbasi, A. R., Moshtkob, A., & Hadidi, S. (2020). Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. Journal of Biomolecular Structure & Dynamics, 38(10), 2837–2848.

    Article  CAS  Google Scholar 

  46. Moradi, Z., Khorasani-Motlagh, M., Rezvani, A. R., & Noroozifar, M. (2018). Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 29-dimethyl 110-phenanthroline. Journal of Biomolecular Structure & Dynamics, 36(3), 779–794.

    Article  CAS  Google Scholar 

  47. Karami, K., Parsianrad, F., Alinaghi, M., & Amirghofran, Z. (2017). Cyclopalladated complexes containing metformin and benzylamine derivatives: Synthesis, characterization, binding interactions with DNA and BSA, in vitro cytotoxicity studies. Inorganica Chimica Acta, 467, 46–55.

    Article  CAS  Google Scholar 

  48. Mirzaei-Kalar, Z. (2018). In vitro binding interaction of atorvastatin with calf thymus DNA: Multispectroscopic, gel electrophoresis and molecular docking studies. Journal of Pharmaceutical and Biomedical Analysis, 161, 101–109.

    Article  CAS  PubMed  Google Scholar 

  49. EzzatiNazhadDolatabadi, J., Panahi-Azar, V., Barzegar, A., Jamali, A. A., Kheirdoosh, F., Kashanian, S., & Omidi, Y. (2014). Spectroscopic and molecular modeling studies of human serum albumin interaction with propyl gallate. RSC Advances, 4(110), 64559–64564.

    Article  CAS  Google Scholar 

  50. Li, Y., Yang, Z., Zhou, M., He, J., Wang, X., Wu, Y., & Wang, Z. (2016). Syntheses, crystal structures and DNA-binding studies of Cu(II) and Zn(II) complexes bearing asymmetrical aroylhydrazone ligand. Journal of Molecular Structure, 1130, 818-820

  51. Chintakuntla, N., Putta, V. R., Mallepally, R. R., & K, N., Vuradi, R. K., Kotha, L. R., Singh, S. S., & Sirasani, S. (2020). Synthesis, structural characterization, in vitro DNA binding, and antitumor activity properties of Ru(II) compounds containing 2(2,6-dimethoxypyridine-3-yl)-1H-imidazo(4,5-f)[1, 10]phenanthroline. Nucleosides, Nucleotides & Nucleic Acids, 39(5), 760–791.

    Article  CAS  Google Scholar 

  52. Chaires, J. B., Dattagupta, N., & Crothers, D. M. (1982). Selfassociation of daunomycin. Biochemistry, 21(17), 3927–3932.

    Article  CAS  PubMed  Google Scholar 

  53. Deepika, N., Praveen kumar, D. Y., Devi, S., Reddy, P., Avudoddi, S., & Satyanarayana, S. (2013). Synthesis, characterization, and DNA binding, photocleavage, cytotoxicity, cellular uptake, apoptosis, and on-off light switching studies of Ru(II) mixed-ligand complexes containing 7-fluorodipyrido[3,2-a:2′,3′-c] phenazine. Journal of Biological Inorganic Chemistry. 18(7), 751-66

  54. Gholivand, M. B., Kashanian, S., Peyman, H., & Roshanfekr, H. (2011). DNA-binding study of anthraquinone derivatives using chemometrics methods. European Journal of Medicinal Chemistry, 46(7), 2630–2638.

    Article  CAS  PubMed  Google Scholar 

  55. Vamsikrishna, N., Daravath, S., Ganji, N., Pasha, N., & Shivaraj. (2020). Synthesis, structural characterization, DNA interaction, antibacterial and cytotoxicity studies of bivalent transition metal complexes of 6-aminobenzothiazole Schiff base. Inorganic Chemistry Communications, 113, 107767.

    Article  CAS  Google Scholar 

  56. Reddy, P. R., Merugu, K. S., & Battu, S. (2018). Molecular docking, DNA interaction and in vitro anti-cancer studies of square-planar Ni (II) and Cu (II) complexes. Chemical Data Collections, 17–18, 30–40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science and Technology, India (no. SR/PURSE Phase 2/32 (G)), and University Grants Commission, India (UPE-FAR), for providing financial assistance to carry out this work.

Funding

This work was supported by the Department of Science and Technology, India (no. SR/PURSE Phase 2/32 (G)), and University Grants Commission, India (UPE-FAR).

Author information

Authors and Affiliations

Authors

Contributions

Rajeshwari K—investigation-lead, methodology-lead, resources-equal, writing (original draft)-equal.

Vasantha P—methodology-supporting, writing (original draft)-supporting.

Shekhar B—project administration-supporting, validation-supporting.

Anantha Lakshmi P V—conceptualization-equal, supervision-lead, writing (original draft)-equal.

Corresponding author

Correspondence to P. V. Anantha Lakshmi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshwari, K., Vasantha, P., Shekhar, B. et al. Metformin-Derived Water-Soluble Cobalt Complexes: Thermal, Spectroscopic, DNA Interaction, and Molecular Docking Studies. Appl Biochem Biotechnol 194, 2650–2671 (2022). https://doi.org/10.1007/s12010-022-03862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03862-3

Keywords

Navigation