Skip to main content
Log in

Pragmatic Treatment Strategies for Polyaromatic Hydrocarbon Remediation and Anti-biofouling from Surfaces Using Nano-enzymes: a Review

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this review, two important environmental pollutants have been considered for its potential remediation using microbial-derived nano-enzymes. Firstly, polyaromatic hydrocarbons (PAHs) are one of the major industrial contaminants in the environment due to their ubiquitous occurrence, toxicity, and proclivity for bioaccumulation. Secondly, biofouling due to biofilm-forming organisms that impact tremendous economic and environmental consequences in many industries, especially marine vessels where it causes an increase in hydrodynamic drag, which results in a loss of ship speed at constant power or a power increase to maintain the same speed with higher fuel consumption and emissions into the atmosphere, particularly Green House Gases (GHGs). Among the remediation strategies, biological routes are found to be promising, efficient, and sustainable. Natural ligninolytic enzymes such as MnP, LiP, laccase, peroxidases, and polysaccharide and protein degradative enzymes are found to be highly efficient for PAH degradation and antifouling respectively. However, large-scale usage of these enzymes is difficult due to various reasons like their poor stability, adaptation, and high-cost production of these enzymes. In recent years, the use of nanoparticles, particularly nano-enzymes, is found to be an innovative and synergistic approach to detoxify contaminated areas with concomitant maintenance of enzyme stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Pedroso-Santana and Fleitas-Salazar (2020) [21])

Fig. 3

Similar content being viewed by others

Data Availability

This submitted article contains all of the data generated or analyzed during this investigation.

References

  1. Guo, Y., Wu, K., Huo, X., & Xu, X. (2011). Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. Journal of Environmental Health, 73(9), 22–25. http://www.jstor.org/stable/26329217.

  2. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  3. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1–3), 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  4. Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  5. Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115

    Article  CAS  PubMed  Google Scholar 

  6. Honda, M., & Suzuki, N. (2020). Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Environmental Research and Public Health, 17(4), 1363. https://doi.org/10.3390/ijerph17041363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813

    Article  PubMed  PubMed Central  Google Scholar 

  8. Archana, S., Sundaramoorthy, B., & Faizullah, M. M. (2019). Review on impact of biofouling in aquafarm infrastrctures. International Journal of Current Microbiology and Applied Sciences, 8(7), 2942–2953. https://doi.org/10.20546/ijcmas.2019.807.365

  9. Kadri, T., Rouissi, T., Kaur Brar, S., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74. https://doi.org/10.1016/j.jes.2016.08.023

    Article  CAS  Google Scholar 

  10. Cajthaml, T., Erbanová, P., Kollmann, A., Novotny, C., Sasek, V., & Mougin, C. (2008). Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiologica, 53, 289–294. https://doi.org/10.1007/s12223-008-0045-7

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Y., Vazquez-Duhalt, R., & Pickard, M. (2002). Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Current Microbiology, 45, 77–87. https://doi.org/10.1007/s00284-001-0081-x

    Article  CAS  PubMed  Google Scholar 

  12. Mallick, S., Chakraborty, J., & Dutta, T. K. (2011). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: A review. Critical Reviews in Microbiology, 37(1), 64–90. https://doi.org/10.3109/1040841X.2010.512268

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Fang, L., Lin, L., Luan, T., & Tam, N. F. Y. (2014). Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere, 99, 152–159. https://doi.org/10.1016/j.chemosphere.2013.10.054

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X., Wang, X., Li, C., Zhang, L., Ning, G., Shi, W., Zhang, X., & Yang, Z. (2020). Ligninolytic enzyme involved in removal of high molecular weight polycyclic aromatic hydrocarbons by Fusarium strain ZH-H2. Environmental Science and Pollution Research, 27(34), 42969–42978. https://doi.org/10.1007/s11356-020-10192-6

    Article  CAS  PubMed  Google Scholar 

  15. Singh, S. (2019). Nanomaterials exhibiting enzyme-like properties (nanozymes): Current advances and future perspectives. Frontiers in Chemistry, 7, 46. https://doi.org/10.3389/fchem.2019.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng, X., Zare, I., Yan, X., & Fan, K. (2019). Protein-protected metal nanoclusters: An emerging ultra-small nanozyme. WIREs Nanomedicine and Nanobiotechnology, e1602. https://doi.org/10.1002/wnan.1602.

  17. Zhang, R., Fan, K., & Yan, X. (2020). Nanozymes: Created by learning from nature. Science China Life Science, 63, 1183–1200. https://doi.org/10.1007/s11427-019-1570-7

    Article  Google Scholar 

  18. Kumar, L., & Bharadvaja, N. (2019). Enzymatic bioremediation: A smart tool to fight environmental pollutants. Microbial Enzymes. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818307-6.00006-8

    Book  Google Scholar 

  19. Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30(3), 512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  20. Kadri, T., Cuprys, A., Rouissi, T., Brar, S. K., Daghrir, R., & Lauzon, J. M. (2018). Nanoencapsulation and release study of enzymes from Alkanivorax borkumensis in chitosan-tripolyphosphate formulation. Biochemical Engineering Journal, 137, 1–10. https://doi.org/10.1016/j.bej.2018.05.013

    Article  CAS  Google Scholar 

  21. Pedroso-Santana, S., & Fleitas-Salazar, N. (2020). Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International, 69(5), 443–447. https://doi.org/10.1002/pi.5970

    Article  CAS  Google Scholar 

  22. Li, G.-Y., Jiang, Y.-R., Huang, K.-L., Ding, P., & Chen, J. (2008). Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. Journal of Alloys and Compounds, 466(1–2), 451–456. https://doi.org/10.1016/j.jallcom.2007.11.100

    Article  CAS  Google Scholar 

  23. Kalkan, N. A., Aksoy, S., Aksoy, E. A., & Hasirci, N. (2012). Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. Journal of Applied Polymer Science, 123(2), 707–716. https://doi.org/10.1002/app.34504

    Article  CAS  Google Scholar 

  24. André, R., Natálio, F., Humanes, M., Leppin, J., Heinze, K., Wever, R., Schröder, H. C., Müller, W. E. G., & Tremel, W. (2011). V2O5 nanowires with an intrinsic peroxidase-like activity. Advanced Functional Materials, 21(3), 501–509. https://doi.org/10.1002/adfm.201001302

    Article  CAS  Google Scholar 

  25. Kamel, S. (2007). Nanotechnology and its applications in lignocellulosic composites, a mini review. eXPRESS Polymer Letters, 1(9), 546–575. https://doi.org/10.3144/expresspolymlett.2007.78.

  26. Puurunen, K., & Vasara, P. (2007). Opportunities for utilising nanotechnology in reaching near-zero emissions in the paper industry. Journal of Cleaner Production, 15(13–14), 1287–1294. https://doi.org/10.1016/j.jclepro.2006.07.013

    Article  Google Scholar 

  27. Zakaria, S., Ong, B. H., & Van De Ven, T. G. M. (2004). Lumen loading magnetic paper II: Mechanism and kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251(1–3), 31–36. https://doi.org/10.1016/j.colsurfa.2004.06.029

    Article  CAS  Google Scholar 

  28. Julkapli, N. M., & Bagheri, S. (2016). Developments in nano-additives for paper industry. Journal of Wood Science, 62(2), 117–130. https://doi.org/10.1007/s10086-015-1532-5

    Article  Google Scholar 

  29. Guo, Q., Ghadiri, R., Weigel, T., Aumann, A., Gurevich, E. L., Esen, C., Medenbach, O., Cheng, W., Chichkov, B., & Ostendorf, A. (2014). Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers, 6(7), 2037–2050. https://doi.org/10.3390/polym6072037

    Article  CAS  Google Scholar 

  30. Chai, C.-H., Zakaria, S., Ahamd, S., Abdullah, M., & Jani, S. M. (2006). Preparation of magnetic paper from kenaf: Lumen loading and in situ synthesis method. American Journal of Applied Sciences, 3(3), 1750–1754. https://doi.org/10.3844/ajassp.2006.1750.1754

    Article  Google Scholar 

  31. Janusz, G., Pawlik, A., Swiderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkolazka, A., & Paszczynski, A. (2020). Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, 21(3), 966. https://doi.org/10.3390/ijms21030966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Munk, L., Sitarz, A. K., Kalyani, D. C., Mikkelsen, J. D., & Meyer, A. S. Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24. https://doi.org/10.1016/j.biotechadv.2014.12.008.

  33. Salvachúa, D., Katahira, R., Cleveland, N. S., Khanna, P., Resch, M. G., Black, B. A., Purvine, S. O., Zink, E. M., Prieto, A., Martínez, M. J., Martínez, A. T., Simmons, B. A., Gladden, J. M., & Beckham, G. T. (2016). Lignin depolymerization by fungal secretomes and a microbial sink. Green Chemistry, 1–18. 10.1039.C6GC01531J–. https://doi.org/10.1039/C6GC01531J.

  34. Saleem, H., & Zaidi, S. J. (2020). Sustainable use of nanomaterials in textiles and their environmental impact. Materials, 13(22), 1–28. https://doi.org/10.3390/ma13225134

    Article  CAS  Google Scholar 

  35. Swaminathan, K., Sandhya, S., Carmalin Sophia, A., Pachhade, K., & Subrahmanyam, Y. V. (2003). Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere, 50(5), 619–625. https://doi.org/10.1016/S0045-6535(02)00615-X

    Article  CAS  PubMed  Google Scholar 

  36. Sadaf, A., Ahmad, R., Ghorbal, A., Elfalleh, W., & Khare, S. K. (2020). Synthesis of cost-effective magnetic nano-biocomposites mimicking peroxidase activity for remediation of dyes. Environmental Science and Pollution Research, 27(22), 27211–27220. https://doi.org/10.1007/S11356-019-05270-3

    Article  CAS  PubMed  Google Scholar 

  37. Dada, E. O., Ojo, I. A., Aldade, A. O., Afolabi, T. J., Jimoh, M. O., & Dauda, M. O. (2020). Biosorption of bromo-based dyes from wastewater using low-cost adsorbents: A review. Journal of Scientific Research and Reports, 26(8), 34–56. https://doi.org/10.9734/jsrr/2020/v26i830294

    Article  Google Scholar 

  38. Rivero, P. J., Urrutia, A., Goicoechea, J., & Arregui, F. J. (2015). Nanomaterials for functional textiles and fibers. Nanoscale Research Letters, 10(1), 1–22. https://doi.org/10.1186/s11671-015-1195-6

    Article  CAS  Google Scholar 

  39. Gangola, S., Joshi, S., Kumar, S., & Pandey, S. C. (2019). Comparative analysis of fungal and bacterial enzymes in biodegradation of xenobiotic compounds. Smart Bioremediation Technologies Microbial Enzymes, 169–189. https://doi.org/10.1016/B978-0-12-818307-6.00010-X.

  40. Esedafe, W. K., Fagade, O. E., Umaru, F. F., & Akinwotu, O. (2015). Bacterial degradation of the polycyclic aromatic hydrocarbon (PAH) -Fraction of refinery effluent. International Journal of Environmental Bioremediation and Biodegradation, 3(1), 23–27. https://doi.org/10.12691/ijebb-3-1-4

    Article  CAS  Google Scholar 

  41. Al-Hawash, A. B. (2018). Fungal degradation of polycyclic aromatic hydrocarbons. International Journal of Pure & Applied Bioscience, 6(2), 8–24. https://doi.org/10.18782/2320-7051.6302.

  42. Yuan, X.-Z., Ren, F.-Y., Zeng, G.-M., Zhong, H., Fu, H.-Y., Liu, J., & Xu, X.-M. (2007). Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property. Applied Microbiology and Biotechnology, 76, 1189–1198. https://doi.org/10.1007/s00253-007-1080-z

    Article  CAS  PubMed  Google Scholar 

  43. Cordeiro, A. L., & Werner, C. (2011). Enzymes for antifouling strategies. Journal of Adhesion Science and Technology, 25(17), 2317–2344. https://doi.org/10.1163/016942411X574961

    Article  CAS  Google Scholar 

  44. Parisien, A., Allain, B., Zhang, J., Mandeville, R., & Lan, C. Q. (2008). Novel alternatives to antibiotics : Bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. Journal of Applied Microbiology, 104(1), 1–13. https://doi.org/10.1111/j.1365-2672.2007.03498.x

    Article  CAS  PubMed  Google Scholar 

  45. Masschalck, B., & Michiels, C. W. (2003). Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical Reviews in Microbiology, 29, 191–214. https://doi.org/10.1080/713610448

    Article  CAS  PubMed  Google Scholar 

  46. Nepal, D., Balasubramanian, S., Simonian, A. L., & Davis, V. A. (2008). Strong antimicrobial coatings: Single-walled carbon nanotubes armored with biopolymers. Nano Letters, 8(7), 1896–1901. https://doi.org/10.1021/nl080522t

    Article  CAS  PubMed  Google Scholar 

  47. Courchesne, N. M. D., Parisien, A., & Lan, C. (2009). Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Patent on Biotechnology, 3, 37–45. https://doi.org/10.2174/187220809787172678

    Article  CAS  Google Scholar 

  48. Jee, S.-C., Kim, M., Sung, J.-S., & Kadam, A. A. (2020). Efficient biofilms eradication by enzymatic-cocktail of pancreatic protease type-I and bacterial Î-amylase. Polymers, 12(12), 3032. https://doi.org/10.3390/polym12123032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaplan, J. B. (2009). Therapeutic potential of biofilm-dispersing enzymes. The International Journal of Artificial Organs, 32(9), 545–554. https://doi.org/10.1177/039139880903200903

    Article  CAS  PubMed  Google Scholar 

  50. Gerlach, R., Cunningham, A. B., & Caccavo, F. (2000). Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal. Environmental Science and Technology, 34, 2461–2464. https://doi.org/10.1021/es991200h

    Article  CAS  Google Scholar 

  51. Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology and Innovation, 5, 10–21. https://doi.org/10.1016/j.eti.2015.11.001

    Article  Google Scholar 

  52. Wang, F., Guo, C., Yang, L. R., & Liu, C. Z. Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. Bioresource Technology, 101, 8931–8935. https://doi.org/10.1016/j.biortech.2010.06.115.

  53. Wang, K.-L., Wu, Z.-H., Wang, Y., Wang, C.-Y., & Xu, Y. (2017). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, 15(9), 266. https://doi.org/10.3390/md15090266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nag, M., Lahiri, D., Dutta, B., Jadav, G., & Ray, R. R. (2021). Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environmental Science and Pollution Research, 28(6), 41365–41379. https://doi.org/10.1007/s11356-021-13704-0

    Article  CAS  PubMed  Google Scholar 

  55. Lahiri, D., Nag, M., Dey, A., Sarkar, T., Joshi, S., Pandit, S., Das, A. P., Pati, S., Pattanaik, S., Tilak, V. K., & Ray, R. R. (2021). Biofilm mediated degradation of petroleum products. Geomicrobiology Journal. https://doi.org/10.1080/01490451.2021.1968979

    Article  Google Scholar 

  56. Quraishi, M., Bhatia, S. K., Pandit, S., Gupta, P. K., Rangarajan, V., Lahiri, D., Varjani, S., Mehariya, S., Yang, Y. H. (2021). Exploiting microbes in the petroleum field: Analyzing the credibility of microbial enhanced oil recovery (MEOR). Energies, 14(15), 4684; https://doi.org/10.3390/en14154684.

  57. Lahiri, D., Nag, M., Ghosh, S., Ray, R. R. (2021). Green synthesis of nanoparticles and their applications in the area of bioenergy and biofuel production. In: Nanomaterials application in biofuels and bioenergy production systems, 195–219. https://doi.org/10.1016/B978-0-12-822401-4.00017-9.

  58. Quraishi, M., Wani, K., Pandit, S., Gupta, P. K., Rai, A. K., Lahiri, D., Jadhav, D. A., Ray, R. R., Jung, S. P., Thakur, V. K., Prasad, R. (2021). Valorisation of CO2 into value-added products via microbial electrosynthesis (MES) and electro-fermentation technology. Fermentation, 7(4), 291; https://doi.org/10.3390/fermentation7040291.

  59. Gupta, R., Banerjee, S., Pandit, S., Gupta, P. K., Mathriya, A. S., Kumar, S., Lahiri, D., Nag, M., Ray, R. R., & Joshi, S. (2021). A comprehensive review on enhanced production of microbial lipids for high-value applications. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02008-5

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lahiri, D., Nag, M., Das, D., Chatterjee, S., Dey, A., Ray, R. R. (2021). In vitro metabolite profiling of microbial biofilm: Role of gas chromatography and high-performance liquid chromatography. In: Analytical Methodologies for Biofilm Research, 95–113. https://doi.org/10.1007/978-1-0716-1378-8_4.

  61. Jasu, A., Lahiri, D., Nag, M., Ray, R. R. (2021). Biofilm-associated metal bioremediation. In: Biotechnology for Sustainable Environment, 201–221. https://doi.org/10.1007/978-981-16-1955-7_8.

  62. Lahiri, D., Nag, M., Ray, R. R. (2021). Industrial applications of photocatalytic methods such as textile pharmaceutical industries, tannery, and craft, 467–488. https://doi.org/10.1016/B978-0-12-823876-9.00021-4.

  63. Patwardhan, S. B., Savia, N., Pandit, S., Gupta, P. K., Mathuriya, A. S., Lahiri, D., Jadhav, D. A., Rai, A. K., Priya, K., Singh, V., Kumar, V., Prasad, R. (2021). Microbial fuel cell united with other existing technologies for enhanced power generation and efficient wastewater treatment. Applied Sciences, 11(22), 10777; https://doi.org/10.3390/app112210777.

  64. Cerniglia, C. E., Sutherland, J. B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi. In Handbook of hydrocarbon and lipid microbiology (pp. 1265–1288). Timmins, K. N. (ed.) Springer. https://doi.org/10.1007/978-3-540-77587-4_151.

  65. Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11(November). https://doi.org/10.3389/fmicb.2020.562813

  66. Gupta, S., & Pathak, B. (2019). Mycoremediation of polycyclic aromatic hydrocarbons. In Abatement of environmental pollutants (pp. 127–149). Elsevier. https://doi.org/10.1016/B978-0-12-818095-2.00006-0.

Download references

Funding

We are grateful to the Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur for the financial and infrastructure support to carry out the research work. AK thanks the Department of Biotechnology (DBT), New Delhi for the financial support (Grant No. BT/PR31154/PBD/26/762/2019) to complete this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RKR, KT, SVR, SVB, and SS involved in literature collection, drafting the manuscript, and illustration preparations. AK provided valuable inputs towards the enzymology aspects of pollutant and critical suggestions of manuscript improvement. SJ is responsible for completion of the manuscript.

Corresponding authors

Correspondence to Samuel Jacob or Arindam Kuila.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, R.K., Theraka, K., Ramprasadh, S.V. et al. Pragmatic Treatment Strategies for Polyaromatic Hydrocarbon Remediation and Anti-biofouling from Surfaces Using Nano-enzymes: a Review. Appl Biochem Biotechnol 195, 5479–5496 (2023). https://doi.org/10.1007/s12010-022-03848-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03848-1

Keywords

Navigation