Skip to main content

Advertisement

Log in

Structural Distinctive 26SK, a Ribosome-Inactivating Protein from Jatropha curcas and Its Biological Activities

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ribosome-inactivating proteins (RIPs) are a group of proteins exhibiting N-glycosidase activity leading to an inactivation of protein synthesis. Thirteen predicted Jatropha curcas RIP sequences could be grouped into RIP types 1 or 2. The expression of the RIP genes was detected in seed kernels, seed coats, and leaves. The full-length cDNA of two RIP genes (26SK and 34.7(A)SK) were cloned and studied. The 34.7(A)SK protein was successfully expressed in the host cells while it was difficult to produce even only a small amount of the 26SK protein. Therefore, the crude proteins were used from E. coli expressing 26SK and 34.7(A)SK constructs and they showed RIP activity. Only the cell lysate from 26SK could inhibit the growth of E. coli. In addition, the crude protein extracted from 26SK expressing cells displayed the effect on the growth of MDA-MB-231, a human breast cancer cell line. Based on in silico analysis, all 13 J. curcas RIPs contained RNA and ribosomal P2 stalk protein binding sites; however, the C-terminal region of the P2 stalk binding site was lacking in the 26SK structure. In addition, an amphipathic distribution between positive and negative potential was observed only in the 26SK protein, similar to that found in the anti-microbial peptide. These findings suggested that this 26SK protein structure might have contributed to its toxicity, suggesting potential uses against pathogenic bacteria in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

RIP:

Ribosome-inactivating protein

rRNA:

Ribosomal RNA

RTA:

Ricin A chain

PMSF:

Phenylmethylsulfonyl fluoride

PBS:

Phosphate buffer saline

References

  1. Openshaw, K. (2000). A review of Jatropha curcas: An oil plant of unfulfilled promise. Biomass & Bioenergy, 19, 1–15.

    Article  Google Scholar 

  2. King, A. J., He, W., Cuevas, J. A., Freudenberger, M., Ramiaramanana, D., & Graham, I. A. (2009). Potential of Jatropha curcas as a source of renewable oil and animal feed. Journal of Experimental Botany, 60, 2897–2905.

    Article  CAS  PubMed  Google Scholar 

  3. Endo, Y., & Tsurugi, K. (1988). The RNA N-glycosidase Activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. Journal of Biological Chemistry, 263(18), 8735–8739.

    Article  CAS  Google Scholar 

  4. Barbieri, L., Valbonesi, P., Gorini, P., Pession, A., & Stirpe, F. (1996). Polynucleotide: adenosine glycosidase activity of saporin-L1: Effect on DNA, RNA and poly(A). Biochemical Journal, 319, 507–513.

    Article  CAS  PubMed Central  Google Scholar 

  5. Park, S. W., Vepachedu, R., Owens, R. A., & Vivanco, J. M. (2004). The N-glycosidase activity of the ribosome-inactivating protein ME1 targets single-stranded regions of nucleic acids independent of sequence or structural motifs. Journal of Biological Chemistry, 279(33), 34165–34174.

    Article  CAS  Google Scholar 

  6. Narayanan, S., Surendranath, K., Bora, N., Surolia, A., & Karande, A. A. (2005). Ribosome inactivating proteins and apoptosis. FEBS Letters, 579(6), 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  7. Lancaster, L., Lambert, N. J., Maklan, E. J., Horan, L. H., & Noller, H. F. (2008). The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. RNA, 10, 1999–2012.

    Article  Google Scholar 

  8. Stirpe, F. (2004). Ribosome-inactivating proteins. Toxicon, 44, 371–383.

    Article  CAS  PubMed  Google Scholar 

  9. Devappa, R. K., Makkar, H. P. S., & Becker, K. (2010). Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from Jatropha. Journal of Agricultural and Food Chemistry, 58(11), 6543–6555.

    Article  CAS  PubMed  Google Scholar 

  10. Luo, M. J., Yang, X. Y., Liu, W. X., Xu, Y., Huang, P., Yan, F., & Chen, F. (2006). Expression, purification and anti-tumor activity of curcin. Acta Biochimica et Biophysica Sinica (Shanghai), 38(9), 663–668.

    Article  CAS  Google Scholar 

  11. Kshirsagar, R. V. (2010). Insecticidal activity of Jatropha seed oil against Callosobruchus maculatus (Fabricius) infesting Phaseolus aconitifolius Jacq. The Bioscan, 5(3), 415–418.

    Google Scholar 

  12. Qin, X., Zheng, X., Shao, C., Gao, J., Jiang, L., Zhu, X., Yan, F., Tang, L., Xu, Y., & Chen, F. (2009). Stress-induced curcin-L promoter in leaves of Jatropha curcas L. and characterization in transgenic tobacco. Planta, 230, 387–395.

    Article  CAS  PubMed  Google Scholar 

  13. Qin, W., Huang, M. X., Xu, Y., Zhang, X. S., & Chen, F. (2005). Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. Journal of Biosciences, 30, 351–357.

    Article  PubMed  Google Scholar 

  14. Huang, M. X., Hou, P., Wei, Q., Xu, Y., & Chen, F. (2008). A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regulation, 54, 115–123.

    Article  CAS  Google Scholar 

  15. Zhang, Y. X., Yang, Q., Li, C. Y., Ding, M. M., Lv, X. Y., Tao, C. Q., Yu, H. W., Chen, F., & Xu, Y. (2017). Curcin C, a novel type I ribosome-inactivating protein from the post-germinating cotyledons of Jatropha curcas. Amino Acids, 49, 1619–1631.

    Article  CAS  PubMed  Google Scholar 

  16. Nuchsuk, C., Wetprasit, N., Roytrakul, S., Choowongkomon, K., T-Thienprasert, N., Yokthongwattana, C., Arpornsuwan, T., & Ratanapo, S. (2013). Bioactivities of Jc-SCRIP, a type 1 ribosome-inactivating protein from Jatropha curcas seed coat. Chemical Biology & Drug Design, 82(4), 453–462.

    Article  CAS  Google Scholar 

  17. Kim, Y. S., & Robertus, J. D. (1992). Analysis of several key active site residues of ricin A chain by mutagenesis and X-ray crystallography. Protein Engineering Design & Selection, 5, 775–779.

    Article  CAS  Google Scholar 

  18. Yan, X. J., Hollis, T., Svinth, M., Day, P., Monzingo, A. F., Milne, G. W. A., & Robertus, J. D. (1997). Structure based identification of a ricin inhibitor. Journal of Molecular Biology, 266, 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  19. Fan, X. J., Zhu, Y. W., Wang, C. Y., Niu, L. W., Teng, M. K., & Li, X. (2016). Structural insights into the interaction of the ribosomal P stalk protein P2 with a type II ribosome-inactivating protein ricin. Scientific Reports, 6, 1–10.

    Article  Google Scholar 

  20. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30, 162–173.

    Article  Google Scholar 

  22. Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27, 343–350.

    Article  CAS  PubMed  Google Scholar 

  23. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7, 1–15.

    Article  CAS  Google Scholar 

  24. Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository - New features and functionality. Nucleic Acids Research, 45, 313–319.

    Article  Google Scholar 

  25. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(1), 296–303.

    Article  Google Scholar 

  26. Rutenber, E., Katzin, B. J., Ernst, S., Collins, E. J., Mlsna, D., Ready, M. P., & Robertus, J. D. (1991). Crystallographic refinement of ricin to 2.5 A. Proteins, 10, 240–250.

    Article  CAS  PubMed  Google Scholar 

  27. Lovell, S. C., Davis, I. W., Arendall, W. B., III., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2002). Structure validation by Cα geometry: φ/ψ and Cβ deviation. Proteins, 50, 437–450.

    Article  Google Scholar 

  28. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  29. Lin, J., Yan, F., Tang, L., & Chen, F. (2003). Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmaceutica Sinica, 24(3), 241–246.

    CAS  Google Scholar 

  30. Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 36, 493–496.

    Article  Google Scholar 

  31. Di Maro, A., Citores, L., Russo, R., Iglesias, R., & Ferreras, J. M. (2014). Sequence comparison and phylogenetic analysis by the Maximum Likelihood method of ribosome-inactivating proteins from angiosperms. Plant Molecular Biology, 85(6), 575–588.

    Article  PubMed  Google Scholar 

  32. Tumer, N. E., & Li, X. P. (2012). Interaction of ricin and Shiga toxins with ribosomes. Current Topics in Microbiology and Immunology, 357, 1–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, Y. J., Li, X. P., Chen, B. Y., & Tumer, N. E. (2017). Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Scientific Reports, 7(4291), 1–12.

    Google Scholar 

  34. Zhou, Y. J., Li, X. P., Kahn, J. N., McLaughlin, J. E., & Tumer, N. E. (2019). Leucine 232 and hydrophobic residues at the ribosomal P stalk binding site are critical for biological activity of ricin. Bioscience Reports, 39(10), 1–15.

    Article  CAS  Google Scholar 

  35. Endo, Y., & Tsurugi, K. (1987). RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. Journal of Biological Chemistry, 262(17), 8128–8130.

    Article  CAS  Google Scholar 

  36. Ajji, P. K., Binder, M. J., Walder, K., & Puri, M. (2017). Balsamin induces apoptosis in breast cancer cells via DNA fragmentation and cell cycle arrest. Molecular and Cellular Biochemistry, 432(1–2), 189–198.

    Article  CAS  PubMed  Google Scholar 

  37. Lu, W. L., Mao, Y. J., Chen, X., Ni, J., Zhang, R., Wang, Y. T., Wang, J., & Wu, L. F. (2018). Fordin: A novel type I ribosome inactivating protein from Vernicia fordii modulates multiple signaling cascades leading to anti-invasive and pro-apoptotic effects in cancer cells in vitro. International Journal of Oncology, 53, 1027–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Teilum, K., Olsen, J. G., & Kragelund, B. B. (2011). Protein stability, flexibility and function. Biochimica et Biophysica Acta, 1814, 969–976.

    Article  CAS  PubMed  Google Scholar 

  39. Stirpe, F., Brizzi-Pession, A., Lorenzoni, E., Strochi, P., Montanaro, L., & Sperti, S. (1976). Studies on the proteins from the seeds of Croton tigilium and Jatropha curcas. Biochemical Journal, 156, 1–6.

    Article  CAS  PubMed Central  Google Scholar 

  40. Kushwaha, G. S., Pandey, N., Sinha, M., Singh, S. B., Kaur, P., Sharma, S., & Singh, T. P. (2012). Crystal structures of a type-1 ribosome inactivating protein from Momordica balsamina in the bound and unbound states. Biochimica et Biophysica Acta, 1824, 679–691.

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava, M., Gupta, S. K., Abhilash, P. C., & Singh, N. (2012). Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. Journal of Molecular Modeling, 18(7), 2971–2979.

    Article  CAS  PubMed  Google Scholar 

  42. Chan, D. S. B., Chu, L. O., Lee, K. M., Too, P. H. M., Ma, K. W., Sze, K. H., Zhu, G., Shaw, P. C., & Wong, K. B. (2007). Interaction between trichosanthin, a ribosome inactivating protein, and the ribosomal stalk protein P2 by chemical shift perturbation and mutagenesis analyses. Nucleic Acids Research, 35(5), 1660–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiou, J. C., Li, X. P., Remacha, M., Ballesta, J. P., & Tumer, N. E. (2008). The ribosomal stalk is required for ribosome binding, depurination of the rRNA and cytotoxicity of ricin A chain in Saccharomyces cerevisiae. Molecular Microbiology, 70, 1441–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krokowski, D., Boguszewska, A., Abramczyk, D., Liljas, A., Tchorzewski, M., & Grankowski, N. (2006). Yeast ribosomal P0 protein has two separate binding sites for P1/P2 proteins. Molecular Microbiology, 60, 386–400.

    Article  CAS  PubMed  Google Scholar 

  45. May, K. L., Li, X. P., Martínez-Azorín, F., Ballesta, J. P., Grela, P., Tchórzewski, M., & Tumer, N. E. (2012). The P1/P2 proteins of the human ribosomal stalk are required for ribosome binding and depurination by ricin in human cells. FEBS Journal, 279(20), 3925–3936.

    Article  CAS  Google Scholar 

  46. McCluskey, A. J., Poon, G. M. K., Bolewska-Pedyczak, E., Srikumar, T., Jeram, S. M., Raught, B., & Gariepy, J. (2008). The catalytic subunit of Shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain. Journal of Molecular Biology, 378, 375–386.

    Article  CAS  PubMed  Google Scholar 

  47. Ayub, M. J., Smulski, C. R., Ma, K. W., Levin, M. J., Shaw, P. C., & Wong, K. B. (2008). The C-terminal end of P proteins mediates ribosome inactivation by trichosanthin but does not affect the pokeweed antiviral protein activity. Biochemical and Biophysical Research Communications, 369, 314–319.

    Article  CAS  PubMed  Google Scholar 

  48. Tam, J. P., Wang, S. J., Wong, K. H., & Tan, W. L. (2015). Antimicrobial peptides from plants. Pharmaceuticals, 8, 711–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Loladze, V. V., Ermolenko, D. N., & Makhatadze, G. I. (2002). Thermodynamic consequences of burial of polar and non-polar amino acid residues in the protein interior. Journal of Molecular Biology, 320(2), 343–357.

    Article  CAS  PubMed  Google Scholar 

  50. La Rocca, P., Shai, Y., & Sansom, M. S. P. (1999). Peptide-bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. Biophysical Chemistry, 76, 145–159.

    Article  PubMed  Google Scholar 

  51. Li, F., Yang, X. X., Xia, H. C., Zeng, R., Hu, W. G., Li, Z., & Zhang, Z. C. (2003). Purification and characterization of Luffin P1, a ribosome-inactivating peptide from the seeds of Luffa cylindrica. Peptides, 24, 799–805.

    Article  CAS  PubMed  Google Scholar 

  52. Ng, Y. M., Yang, Y. H., Sze, K. H., Zhang, X., Zheng, Y. T., & Shaw, P. C. (2011). Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica). Journal of Structural Biology, 174, 164–172.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Associate Professor Kittisak Yokthongwattana, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand, for providing the plasmid, pETDuet-CPN60B1.

Funding

This work was supported in part by funding (v-t(d)45.54) to CY from the Kasetsart University Research and Development Institute (KURDI), Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

D.P. and C.Y. conceived and designed the experiments. D.P. performed the experiments. D.P., K.C., S.R., and C.Y. analyzed the data. D.P. and C.Y. wrote the manuscript with contributions from all authors. All authors read and commented on the manuscript before submission.

Corresponding author

Correspondence to Chotika Yokthongwattana.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Human and Animal Participants

No such procedures were performed in studies.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The Growth rate of E. coli host cells expressing (a) 26SK and (b) 34.7(A)SK under inducing and non-inducing conditions. EV: E. coli carrying pET28a(+) or pETDuet-1 empty vector in (a) and (b) respectively; 26SK: E. coli containing pET28(a)+-26SK; 34.7(A)SK: E. coli harboring pETDuet-34.7(A)SK: CPN60B1: E. coli harboring pETDuet-CPN60B1; N: non-inducing condition; I: inducing condition (PNG 188 kb)

High resolution image (TIF 238 kb)

Supplementary Fig. 2

Recombinant RIPs production in E. coli cells. (a) SDS-PAGE (b) Western blot of pET28a(+) empty vector, CPN60B1, 26SK and 34.7(A)SK crude proteins under inducing and non-inducing conditions. M: Prestained SDS-PAGE standard broad range protein marker; EV: pET28a(+) empty vector; CPN60B1: E. coli harboring pETDuetTM-CPN60B1; 26SK: E. coli carrying pET28(a)+-26SK; 34.7(A)SK: E. coli containing pETDuetTM-34.7(A)SK; N: non- inducing condition; I: inducing condition. (Exposure time = 120 seconds) (PNG 1669 kb)

High resolution image (TIF 36659 kb)

Supplementary Fig. 3

Electrostatic potential map of transmembrane helices located in 26SK, 33curcin, 34.7(A)SK and luffin P1. Predicted conformation of 26SK, 33curcin, and 34.7(A)SK represented by green ribbons and luffin P1 transmembrane helices and transmembrane helices of 26SK, 33curcin and 34.7(A)SK display by black ribbons. Histogram presents the charge of electrostatic potential from -1.8 (red) to 1.8 (blue). (PNG 1175 kb)

High resolution image (TIF 47415 kb)

Supplementary Table 1

(DOCX 18 kb)

Supplementary Table 2

(DOCX 17 kb)

Supplementary Table 3

(DOCX 15 kb)

Supplementary Table 4

(DOCX 16 kb)

Supplementary Table 5

(DOCX 14 kb)

Supplementary Table 6

(DOCX 12 kb)

Supplementary Table 7

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathanraj, D., Choowongkomon, K., Roytrakul, S. et al. Structural Distinctive 26SK, a Ribosome-Inactivating Protein from Jatropha curcas and Its Biological Activities. Appl Biochem Biotechnol 193, 3877–3897 (2021). https://doi.org/10.1007/s12010-021-03714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03714-6

Keywords

Navigation