Skip to main content

Advertisement

Log in

Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pesticides play a significant role in crop production and have become an inevitable part of the modern environment due to their extensive distribution throughout the soil ecosystem. Prophylactic applications of chlorpyrifos (CP) affect soil fertility, modify soil microbial community structure, and pose potential health risks to the nontarget organisms. Bioremediation through microbial metabolism is found to be an ecofriendly and cheaper process for CP removal from the environment. So far, various bacterial and fungal communities have been reported for CP and its metabolites degradation. Organophosphorus hydrolase (OPH) and methyl parathion hydrolase (MPH) are crucial bacterial enzymes for CP degradation as they efficiently hydrolyze the unbreakable P-O and P = S bond. This review discusses the prospects of toxicity level, persistency, and harmful effects of CP on the environment. CP degradation mechanisms, metabolic pathways, and key enzymes, along with their structural details, are also featured. The highlights on molecular docking with OPH and MPH enzyme for CP show the best binding affinity with OPH; hence, it is an essential part of CP degradation. Simultaneously, metagenomic analysis of soil from contaminated agricultural lands and wastewater was analyzed with the goal to identify the dominant CP degraders and enzymes. The identification of potent degraders, key enzymes, and evaluation of microbial community dynamics upon pesticide exposure can be used as a warning for its dissemination and biomagnification into the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and materials availability

The data sets used in the review article are the secondary data and publically available at the NCBI.

Code availability

Not applicable.

References

  1. Prakash Verma, J., Durgesh, Jaiswal, K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: A-state-of-art. Reviews in Environmental Science and Bio/Technology, 13, 429–466.

    Article  Google Scholar 

  2. Odukkathil, G., & Vasudevan, N. (2013). Toxicity and bioremediation of pesticides in agricultural soil. Reviews in Environmental Science and Bio/Technology, 12(4), 421–444.

    Article  CAS  Google Scholar 

  3. Gilani, R. A., Rafique, M., Rehman, A., Munis, M. F. H., Rehman, S., & ur, & Chaudhary, H. J. . (2016). Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. Journal of Basic Microbiology, 56(2), 105–119.

    Article  CAS  PubMed  Google Scholar 

  4. Storck, V., Nikolaki, S., Perruchon, C., Chabanis, C., Sacchi, A., Pertile, G., & Martin-Laurent, F. (2018). Lab to field assessment of the ecotoxicological impact of chlorpyrifos, isoproturon, or tebuconazole on the diversity and composition of the soil bacterial community. Frontiers in Microbiology, 9, 1–13.

    Article  Google Scholar 

  5. Dar, M. A., Kaushik, G., & Villarreal-Chiu, J. F. (2019). June 1). Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. Journal of Environmental Management., 239, 124–136.

    Article  CAS  PubMed  Google Scholar 

  6. Foong, S. Y., Ma, N. L., Lam, S. S., Peng, W., Low, F., Lee, B. H. K., & Sonne, C. (2020). A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. Journal of Hazardous Materials, 400, 123006.

    Article  CAS  PubMed  Google Scholar 

  7. Pailan, S., Sengupta, K., Ganguly, U., & Saha, P. (2016). Evidence of biodegradation of chlorpyrifos by a newly isolated heavy metal-tolerant bacterium Acinetobacter sp. strain MemCl4. Environmental Earth Sciences, 75(12), 1–10.

    Article  CAS  Google Scholar 

  8. Soto-Mancera, F., Arellano, J. M., & Albendín, M. G. (2020). Carboxylesterase in Sparus aurata: Characterisation and sensitivity to organophosphorus pesticides and pharmaceutical products. Ecological Indicators, 109, 105603.

    Article  CAS  Google Scholar 

  9. Dafale, N., Rao, N. N., Meshram, S. U., & Wate, S. R. (2008). Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium - Biostimulation and halo tolerance. Bioresource Technology, 99(7), 2552–2558.

    Article  CAS  PubMed  Google Scholar 

  10. Pandey, A. K., Gaur, V. K., Udayan, A., Varjani, S., Kim, S. H., & Wong, J. W. C. (2021). Biocatalytic remediation of industrial pollutants for environmental sustainability: Research needs and opportunities. Chemosphere, 272, 129936.

    Article  CAS  Google Scholar 

  11. Wang, P., Rashid, M., Liu, J., Hu, M., & Zhong, G. (2016). Identification of multi-insecticide residues using GC-NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils. Food Chemistry, 212, 420–426.

    Article  CAS  PubMed  Google Scholar 

  12. Jhariya, U., Dafale, N. A., Srivastava, S., Bhende, R. S., Kapley, A., & Purohit, H. J. (2021). Understanding ethanol tolerance mechanism in Saccharomyces cerevisiae to enhance the bioethanol production: Current and future prospects. Bioenergy Research, 1–19.

  13. John, E. M., & Shaike, J. M. (2015). Chlorpyrifos: Pollution and remediation. Environmental Chemistry Letters, 13(3), 269–291.

    Article  CAS  Google Scholar 

  14. Amani, F., Student, P., Akbar, A., Sinegani, S., Ebrahimi, F., & Nazarian, S. (2019). Biodegradation of chlorpyrifos and diazinon organophosphates by two bacteria isolated from contaminated agricultural soils. Biological Journal of Microorganisms, 7(28), 27–39.

    Google Scholar 

  15. Gebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sediments. Reviews of Environmental Contamination and Toxicology, 215, 123–175.

    PubMed  Google Scholar 

  16. Jaiswal, S., Kiran Bara, J., Soni, R., & Shrivastava, K. (2017). Bioremediation of chlorpyrifos contaminated soil by microorganism. International Journal of Environment, Agriculture and Biotechnology, 2(4).

  17. Aziz, H. (2018). Soil retention and bioavailability of chlorpyrifos to maize in soil receiving different organic amendments. (Doctoral dissertation, University of Agriculture, Faisalabad.).

  18. Atabila, A., Sadler, R., Phung, D. T., Hogarh, J. N., Carswell, S., Turner, S., & Chu, C. (2018). Biomonitoring of chlorpyrifos exposure and health risk assessment among applicators on rice farms in Ghana. Environmental Science and Pollution Research, 25(21), 20854–20867.

    Article  CAS  PubMed  Google Scholar 

  19. Papadopoulou, E. S., Lagos, S., Spentza, F., Vidiadakis, E., Karas, P. A., Klitsinaris, T., & Karpouzas, D. G. (2016). The dissipation of fipronil, chlorpyrifos, fosthiazate and ethoprophos in soils from potato monoculture areas: First evidence for the enhanced biodegradation of fosthiazate. Pest Management Science, 72(5), 1040–1050.

    Article  CAS  PubMed  Google Scholar 

  20. Neuwirthová, N., Bílková, Z., Vašíčková, J., Hofman, J., & Bielská, L. (2018). Concentration/time-dependent dissipation, partitioning and plant accumulation of hazardous current-used pesticides and 2-hydroxyatrazine in sand and soil. Chemosphere, 203, 219–227.

    Article  PubMed  CAS  Google Scholar 

  21. Mosquera-Vivas, C. S., Hansen, E. W., García-Santos, G., Obregón-Neira, N., Celis-Ossa, R. E., González-Murillo, C. A., & Guerrero-Dallos, J. A. (2016). The effect of the soil properties on adsorption, single-point desorption, and degradation of chlorpyrifos in two agricultural soil profiles from Colombia. Soil Science, 181(9/10), 446–456.

    Article  CAS  Google Scholar 

  22. Dua, K., & Joshi, N. (2020). Chlorpyrifos: It’s bioremediation in agricultural soils. Journal of Pharmacognosy and Phytochemistry, 9(4), 2049–2060.

    Article  CAS  Google Scholar 

  23. Pavlidis, G., Karasali, H., & Tsihrintzis, V. A. (2020). Pesticide and fertilizer pollution reduction in two alley cropping agroforestry cultivating systems. Water, Air, and Soil Pollution, 231(5).

  24. Alizadeh, R., Rafati, L., Ebrahimi, A. A., Ehrampoush, M. H., & Khavidak, S. S. (2018). Chlorpyrifos Bioremediation in the environment: A review. Journal of Environmental Health and Sustainable Development., 3(3), 606–615.

    CAS  Google Scholar 

  25. Rayu, S., Nielsen, U. N., Nazaries, L., & Singh, B. K. (2017). Isolation and molecular characterization of novel chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Frontiers in Microbiology, 8(APR), 1–16.

    Google Scholar 

  26. Yadav, S., Khan, M. A., Sharma, R., Malik, A., & Sharma, S. (2021). Potential of formulated Dyadobacter jiangsuensis strain 12851 for enhanced bioremediation of chlorpyrifos contaminated soil. Ecotoxicology and Environmental Safety, 213, 112039.

    Article  CAS  PubMed  Google Scholar 

  27. Ghosal, A., & Hati, A. (2019). Impact of some new generation insecticides on soil arthropods in rice maize cropping system. The Journal of Basic and Applied Zoology, 80(1), 1–8.

    Article  Google Scholar 

  28. Korade, D. L., & Fulekar, M. H. (2009). Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. Journal of Hazardous Materials, 172(2–3), 1344–1350.

    Article  CAS  PubMed  Google Scholar 

  29. Gvozdenac, S., Inđić, D., & Vuković, S. (2013). Phytotoxicity of Chlorpyrifos to White Mustard (Sinapis alba L.) and Maize (Zea mays L.): Potential Indicators of Insecticide Presence in Water. Pesticides and Phytomedicine (Belgrade), 28(4), 265–271.

    CAS  Google Scholar 

  30. Kavitha, P., & Rao, J. V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environmental Toxicology and Pharmacology, 26(2), 192–198.

    Article  CAS  PubMed  Google Scholar 

  31. Deb, N., & Das, S. (2021). Acetylcholine esterase and antioxidant responses in freshwater teleost, Channa punctata exposed to chlorpyrifos and urea. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 240.

  32. Botté, E. S., Jerry, D. R., Codi King, S., Smith-Keune, C., & Negri, A. P. (2012). Effects of chlorpyrifos on cholinesterase activity and stress markers in the tropical reef fish Acanthochromis polyacanthus. Marine Pollution Bulletin, 65(4–9), 384–393.

    Article  PubMed  CAS  Google Scholar 

  33. Sunanda, M., Rao, C., Neelima, P., Govinda Rao, K., & Simhachalam, G. (2016). Effects of chlorpyrifos (an organophosphate pesticide) in fish. International Journal of Pharmaceutical Sciences Review and Research, 39(1), 299–305.

    CAS  Google Scholar 

  34. Padmanabha, A., Reddy, H. R. V., Khavi, M., Prabhudeva, K. N., Rajanna, K. B., & Chethan, N. (2015). Acute effects of chlorpyrifos on oxygen consumption and food consumption of freshwater fish, Oreochromis mossambicus (Peters). International Journal of Recent Scientific Research, 6(4), 3380–3384.

    Google Scholar 

  35. Xu, D. H., Shoemaker, C. A., & Zhang, D. (2015). Treatment of Trichodina sp reduced load of Flavobacterium columnare and improved survival of hybrid tilapia. Aquaculture Reports, 2, 126–131.

    Article  Google Scholar 

  36. Ismail, N. A. H., Wee, S. Y., Haron, D. E. M., Kamarulzaman, N. H., & Aris, A. Z. (2020). Occurrence of endocrine disrupting compounds in mariculture sediment of Pulau Kukup, Johor, Malaysia. Marine Pollution Bulletin, 150, 110735. https://doi.org/10.1016/j.marpolbul.2019.110735.

    Article  CAS  PubMed  Google Scholar 

  37. Mit, C., Tebby, C., Gueganno, T., Bado-Nilles, A., & Beaudouin, R. (2021). Modeling acetylcholine esterase inhibition resulting from exposure to a mixture of atrazine and chlorpyrifos using a physiologically-based kinetic model in fish. Science of the Total Environment, 773.

  38. Li, Z., He, X., Wang, Z., Yang, R., Shi, W., & Ma, H. (2015). In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off-on probe. Biosensors and Bioelectronics, 63, 112–116.

    Article  CAS  PubMed  Google Scholar 

  39. Kaur, M., & Jindal, R. (2018). Toxicopathic Branchial Lesions in Grass Carp (Ctenopharyngodon idellus) Exposed to Chlorpyrifos. Bulletin of Environmental Contamination and Toxicology, 100(5), 665–671.

    Article  CAS  PubMed  Google Scholar 

  40. Huang, X., Cui, H., & Duan, W. (2020). Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicology and Environmental Safety, 200, 110731.

    Article  CAS  PubMed  Google Scholar 

  41. Srivastav, A. K., Srivastava, S., Kumar, A., Srivastav, S. K., &, & Suzuki, N. (2020). Effects of chlorpyrifos on ultimobranchial and parathyroid glands of Indian skipper frog, Euphlyctis cyanophlyctis. European Journal of Biological Research. European Journal of Biological Research, 10(4).

  42. Wacksman, M., Maul, J., Environmental, M.L.-A., & of, &, . (2006). U. (2006). Impact of atrazine on chlorpyrifos toxicity in four aquatic vertebrates. Springer, 51, 681–689.

    CAS  Google Scholar 

  43. EL-Nahhal, Y., & Lubbad, R. (2018). Acute and single repeated dose effects of low concentrations of chlorpyrifos, diuron, and their combination on chicken. Environmental Science and Pollution Research, 25(11), 10837–10847.

    Article  CAS  PubMed  Google Scholar 

  44. Rubach, M. N., Crum, S. J. H., & Van Den Brink, P. J. (2011). Variability in the dynamics of mortality and immobility responses of freshwater arthropods exposed to chlorpyrifos. Archives of Environmental Contamination and Toxicology, 60(4), 708–721.

    Article  CAS  PubMed  Google Scholar 

  45. Hasenbein, S., Poynton, H., & Connon, R. E. (2018). Contaminant exposure effects in a changing climate: How multiple stressors can multiply exposure effects in the amphipod Hyalella azteca. Ecotoxicology, 27(7), 845–859.

    Article  CAS  PubMed  Google Scholar 

  46. Dolar, A., Selonen, S., van Gestel, C. A. M., Perc, V., Drobne, D., & Jemec Kokalj, A. (2021). Microplastics, chlorpyrifos and their mixtures modulate immune processes in the terrestrial crustacean Porcellio scaber. Science of the Total Environment, 772, 144900.

    Article  CAS  Google Scholar 

  47. JanakiDevi, V., Nagarani, N., YokeshBabu, M., Kumaraguru, A. K., & Ramakritinan, C. M. (2013). A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere, 90(3), 1158–1166.

    Article  CAS  PubMed  Google Scholar 

  48. Yancheva, V., Georgieva, E., Stoyanova, S., Tsvetanova, V., Todorova, K., Mollov, I., & Velcheva, I. (2018). Short-and long-term toxicity of cadmium and polyaromatic hydrocarbons on Zebra mussel Dreissena polymorpha (Pallas, 1771)(Bivalvia: Dreissenidae). Acta Zoologica Bulgarica, 70(4), 557–564.

    Google Scholar 

  49. Al-Fanharawi, A. A., Rabee, A. M., & Al-Mamoori, A. M. J. (2019). Multi-biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis. Human and Ecological Risk Assessment, 25(5), 1137–1156.

    Article  CAS  Google Scholar 

  50. Banaee, M., Akhlaghi, M., Soltanian, S., Sureda, A., Gholamhosseini, A., & Rakhshaninejad, M. (2020). Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylus. Ecotoxicology, 29(9), 1500–1515.

    Article  CAS  PubMed  Google Scholar 

  51. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X. (2012). Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere, 88(4), 377–383.

    Article  CAS  PubMed  Google Scholar 

  52. Balbi, T., Ciacci, C., & Canesi, L. (2019). Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology., 222, 135–144.

    CAS  PubMed  Google Scholar 

  53. Narra, M. R., Rajender, K., Rudra Reddy, R., Rao, J. V., & Begum, G. (2015). The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere, 132, 172–178.

    Article  CAS  PubMed  Google Scholar 

  54. Janssens, L., & Stoks, R. (2017). Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide. Environmental Pollution, 226, 79–88.

    Article  CAS  PubMed  Google Scholar 

  55. Negro, C. L., Estrubia, J. F., Rivera, F., & Collins, P. (2021). Effects of chlorpyrifos over reproductive traits of three sympatric freshwater crustaceans. Bulletin of Environmental Contamination and Toxicology, 106(5), 759–764.

    Article  CAS  PubMed  Google Scholar 

  56. Pawar, A. P., Sanaye, S. V., Shyama, S., Sreepada, R. A., & Dake, A. S. (2020). Effects of salinity and temperature on the acute toxicity of the pesticides, dimethoate and chlorpyrifos in post-larvae and juveniles of the whiteleg shrimp. Aquaculture Reports, 16.

  57. Key, P. B., Simonik, E., Kish, N., Chung, K. W., & Fulton, M. H. (2013). Differences in response of two model estuarine crustaceans after lethal and sublethal exposures to chlorpyrifos. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 48(11), 967–973.

    CAS  Google Scholar 

  58. Macirella, R., Madeo, G., Sesti, S., Tripepi, M., Bernabò, I., Godbert, N., & Brunelli, E. (2020). Exposure and post-exposure effects of chlorpyrifos on Carassius auratus gills: An ultrastructural and morphofunctional investigation. Chemosphere, 251, 126434.

    Article  CAS  PubMed  Google Scholar 

  59. Banaee, M., Akhlaghi, M., Soltannian, S., Gholamhosseini, A., Heidarieh, H., & Fereidouni, M. S. (2019). Acute exposure to chlorpyrifos and glyphosate induces changes in hemolymph biochemical parameters in the crayfish, Astacus leptodactylus (Eschscholtz, 1823). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 222, 145–155.

    CAS  Google Scholar 

  60. Narra, M. R., Regatte, R. R., & Kodimyala, R. (2012). Effects of chlorpyrifos on enzymes as biomarkers of toxicity in Fresh water field crab Barytelphusa guerini. International Journal of Environmental Sciences, 2(4), 2015–2023.

    CAS  Google Scholar 

  61. Taylor, L. J., Mann, N. S., Daoud, D., Clark, K. F., Van Den Heuvel, M. R., & Greenwood, S. J. (2019). Effects of Sublethal Chlorpyrifos Exposure on Postlarval American Lobster (Homarus americanus). Environmental Toxicology and Chemistry, 38(6), 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  62. Rivadeneira, P. R., Agrelo, M., Otero, S., & Kristoff, G. (2013). Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod. Ecotoxicology and Environmental Safety, 90, 82–88.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Z., Liu, Q., Cai, J., Yang, J., Shen, Q., & Xu, S. (2017). Chlorpyrifos exposure in common carp (Cyprinus carpio L.) leads to oxidative stress and immune responses. Fish and Shellfish Immunology, 67, 604–611.

    Article  CAS  PubMed  Google Scholar 

  64. Knysh, K. M., Courtenay, S. C., Grove, C. M., & van den Heuvel, M. R. (2021). The differential effects of salinity level on chlorpyrifos and imidacloprid toxicity to an estuarine amphipod. Bulletin of Environmental Contamination and Toxicology, 106(5), 753–758.

    Article  CAS  PubMed  Google Scholar 

  65. Aluigi, M. G., Falugi, C., Mugno, M. G., Privitera, D., & Chiantore, M. (2010). Dose-dependent effects of chlorpyriphos, an organophosphate pesticide, on metamorphosis of the sea urchin, Paracentrotus lividus. Ecotoxicology, 19(3), 520–529.

    Article  CAS  PubMed  Google Scholar 

  66. Pérez, J., Monteiro, M. S., Quintaneiro, C., Soares, A. M. V. M., & Loureiro, S. (2013). Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity. Aquatic Toxicology, 144–145, 296–302.

    Article  PubMed  CAS  Google Scholar 

  67. Tang, G., Yao, J., Zhang, X., Lu, N., & Zhu, K. Y. (2018). Comparison of gene expression profiles in the aquatic midge (Chironomus tentans) larvae exposed to two major agricultural pesticides. Chemosphere, 194, 745–754.

    Article  CAS  PubMed  Google Scholar 

  68. Sharma, P., Pandey, A. K., Udayan, A., & Kumar, S. (2021). Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresource Technology, 326, 124750.

    Article  CAS  PubMed  Google Scholar 

  69. Swarupa, P., & Kumar, A. (2018). Impact of Chlorpyrifos on Plant Growth Promoting Rhizobacteria Isolated from Abelmoschus esculentus. Journal of Pure and Applied Microbiology, 12(4), 2149–2157.

    Article  CAS  Google Scholar 

  70. Lu, C., Yang, Z., Liu, J., Liao, Q., Ling, W., Waigi, M. G., & Odinga, E. S. (2020). Chlorpyrifos inhibits nitrogen fixation in rice-vegetated soil containing Pseudomonas stutzeri A1501. Chemosphere, 256, 127098.

    Article  CAS  PubMed  Google Scholar 

  71. Kumar, U., Berliner, J., Adak, T., Rath, P. C., Dey, A., Pokhare, S. S., & Mohapatra, S. D. (2017). Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicology and Environmental Safety, 135, 225–235.

    Article  CAS  PubMed  Google Scholar 

  72. Supreeth, M., Chandrashekar, M. A., Sachin, N., & Raju, N. S. (2016). Effect of chlorpyrifos on soil microbial diversity and its biotransformation by Streptomyces sp HP-11. 3 Biotech, 6(2), 1–6.

    Article  Google Scholar 

  73. Fernandes, C., Figueira, E., Tauler, R., & Bedia, C. (2018). Exposure to chlorpyrifos induces morphometric, biochemical and lipidomic alterations in green beans (Phaseolus vulgaris). Ecotoxicology and Environmental Safety, 156, 25–33.

    Article  CAS  PubMed  Google Scholar 

  74. Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., & Marfo, T. D. (2020). Impact of agrochemicals on soil microbiota and management: A review. Land, 9(2).

  75. Medo, J., Maková, J., Kovácsová, S., Majerčíková, K., & Javoreková, S. (2015). Effect of Dursban 480 EC (chlorpyrifos) and Talstar 10 EC (bifenthrin) on the physiological and genetic diversity of microorganisms in soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 50(12), 871–883.

    CAS  Google Scholar 

  76. Chu, X., Fang, H., Pan, X., Wang, X., Shan, M., Feng, B., & Yu, Y. (2008). Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. Journal of Environmental Sciences, 20(4), 464–469.

    Article  CAS  Google Scholar 

  77. Kadyan, D., & Chawla, N. (2020). Impact of chlorpyriphos pesticide on microbial populations and enzymatic activities in cotton planted soil. The Pharma Innovation Journal., 9(2), 152–159.

    Article  CAS  Google Scholar 

  78. Meng, D., Jiang, W., Li, J., Huang, L., Zhai, L., Zhang, L., & Liao, X. (2019). An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. Journal of Environmental Science and Health, Part B, 54(4), 336–343.

    Article  CAS  Google Scholar 

  79. Karas, P. A., Baguelin, C., Pertile, G., Papadopoulou, E. S., Nikolaki, S., Storck, V., & Karpouzas, D. G. (2018). Assessment of the impact of three pesticides on microbial dynamics and functions in a lab-to-field experimental approach. Science of the Total Environment, 637–638, 636–646.

    Article  CAS  Google Scholar 

  80. Sanchez-Hernandez, J. C., & Sandoval, M. (2017). Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale. Ecotoxicology and Environmental Safety, 142, 303–311.

    Article  CAS  PubMed  Google Scholar 

  81. Yadav, M., Shukla, A. K., Srivastva, N., Upadhyay, S. N., & Dubey, S. K. (2016). Utilization of microbial community potential for removal of chlorpyrifos: A review. Critical Reviews in Biotechnology, 36(4), 727–742.

    Article  CAS  PubMed  Google Scholar 

  82. Karthik, M., Dafale, N., Pathe, P., & Nandy, T. (2008). Biodegradability enhancement of purified terephthalic acid wastewater by coagulation-flocculation process as pretreatment. Journal of Hazardous Materials, 154(1–3), 721–730.

    Article  CAS  PubMed  Google Scholar 

  83. Khan, S. H., Pathak, B., & Fulekar, M. H. (2018). Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnology for Environmental Engineering, 3(1), 1–14.

    Article  CAS  Google Scholar 

  84. Lee, C. S., Venkatesan, A. K., Walker, H. W., & Gobler, C. J. (2020). Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane. Water Research, 173, 115534.

    Article  CAS  PubMed  Google Scholar 

  85. Femia, J., Mariani, M., Zalazar, C., & Tiscornia, I. (2013). Photodegradation of chlorpyrifos in water by UV/H2O2 treatment: Toxicity evaluation. Water Science and Technology, 68(10), 2279–2286.

    Article  CAS  PubMed  Google Scholar 

  86. Sharma, P., Pandey, A. K., Kim, S.-H., Singh, S. P., Chaturvedi, P., & Varjani, S. (2021). Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation, 24, 101826.

    Article  CAS  Google Scholar 

  87. Parte, S. G., Mohekar, A. D., & Kharat, A. S. (2017). Microbial degradation of pesticide: A review Environmental Microbiology View project bgl operon View project. Article in African Journal of Microbiology Research, 11(24), 992–1012.

    Article  CAS  Google Scholar 

  88. Sharma, B., Saxena, S., Datta, A., & Arora, S. B. (2016). Spectrophotometric analysis of degradation of chlorpyrifos pesticide by indigenous microorganisms isolated from affected soil. International journal of current microbiology and applied sciences., 5(9), 742–749.

    Article  CAS  Google Scholar 

  89. Abraham, J., & Silambarasan, S. (2018). Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by fungal consortium isolated from paddy field soil. Environmental Engineering and Management, 17(3), 523–528.

    Article  CAS  Google Scholar 

  90. Hossain, M. S., Chowdhury, M. A. Z., Pramanik, M. K., Rahman, M. A., Fakhruddin, A. N. M., & Alam, M. K. (2015). Determination of selected pesticides in water samples adjacent to agricultural fields and removal of organophosphorus insecticide chlorpyrifos using soil bacterial isolates. Applied Water Science, 5(2), 171–179.

    Article  CAS  Google Scholar 

  91. Ghaima, K. K., Rahal, N. S., Rahal, B. S., & Mohamed, M. M. (2020). Biodegradation of chlorpyrifos pesticides by Xanthomonas bacteria isolated from agricultural soil in Baghdad. Plant Cell Biotechnology And Molecular Biology, 84–90.

  92. Duraisamy, K., Muthusamy, S., & Balakrishnan, S. (2018). An eco-friendly detoxification of chlorpyrifos by Bacillus cereus MCAS02 native isolate from agricultural soil, Namakkal, Tamil Nadu, India. Biocatalysis and Agricultural Biotechnology, 13, 283–290.

    Article  Google Scholar 

  93. Rank, J. K., Nathani, N. M., Hinsu, A. T., Joshi, A. U., Shekar, M. C., & Kothari, R. K. (2018). Isolation, characterization and growth response study of chlorpyrifos utilizing soil bacterium Pseudomonas putida JR16. Indian Journal of Agricultural Research, 52(4), 355–361.

    Google Scholar 

  94. Hamsavathani, V., Aysha, O. S., & Ajith, A. R. (2017). Isolation and identification of chlorpyrifos degrading bacteria from agricultural soil. International Journal of Advanced Research, 5(5), 1209–1221.

    Article  CAS  Google Scholar 

  95. El-Sayed, G. M., Abosereh, N. A., Ibrahim, S. A., Abdel-Razik, A. B., Hammad, M. A., & Hafez, F. M. (2018). Identification of gene encoding organophosphorus hydrolase (OPH) enzyme in potent organophosphates-degrading bacterial isolates. Journal of Environmental Science and Technology, 11(4), 175–189.

    Article  CAS  Google Scholar 

  96. Suman, S., Singh, T., Swayamprabha, S., & Singh, S. (2020). Biodegradation of pesticide chlorpyrifos by bacteria Staphylococcus aureus (accession no. CP023500.1) isolated from agricultural soil. Journal of Ecophysiology and Occupational Health, 20(1 & 2), 21–26.

    Article  CAS  Google Scholar 

  97. Aswathi, A., Pandey, A., & Sukumaran, R. K. (2019). Rapid degradation of the organophosphate pesticide – Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresource Technology, 292, 122025.

    Article  CAS  PubMed  Google Scholar 

  98. John, E. M., Varghese, E. M., Shanavas, J., Krishnasree, N., & Jisha, M. S. (2018). In situ Bioremediation of Chlorpyrifos by Klebsiella sp. Isolated from Pesticide Contaminated Agricultural Soil. Article in International Journal of Current Microbiology and Applied Sciences, 7(3), 1418–1429.

    Google Scholar 

  99. Aswani, P., Varghese, E. M., & Jisha, M. S. (2019). Toxicity of chlorpyrifos and and its bioremediation using Pseudomonas putida. Pesticide Research Journal, 31(2), 220–232.

    Article  CAS  Google Scholar 

  100. Sharma, A. K., Kasture, A., Pandit, J., & Shirkot, P. (2017). Isolation, characterization and identification of chlorpyrifos tolerant Pseudomonas strain exhibiting extracellular organo-phosphorus hydrolase (OPH) activity from apple orchard soils of himachal pradesh. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 935–944.

    Google Scholar 

  101. Bhardwaj, A., & Verma, N. (2017). Proficient Biodegradation Studies of Chlorpyrifos and its Metabolite 3,5,6-Trichloro-2-pyridinol by Bacillus subtilis NJ11 Strain. Research Journal of Microbiology., 13, 53–64.

    Article  CAS  Google Scholar 

  102. Raj, A., Yadav, A., Rawat, A. P., Singh, A. K., Kumar, S., Pandey, A. K., & Pandey, A. (2021). Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology & Innovation, 23, 101556.

    Article  CAS  Google Scholar 

  103. Dafale, N., Wate, S., Meshram, S., & Nandy, T. (2008). Kinetic study approach of remazol black-B use for the development of two-stage anoxic-oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. Journal of Hazardous Materials, 159(2–3), 319–328.

    Article  CAS  PubMed  Google Scholar 

  104. Gaonkar, O., Nambi, I. M., & Kumar, G. S. (2019). Biodegradation kinetics of dichlorvos and chlorpyrifos by enriched bacterial cultures from an agricultural soil. Bioremediation Journal, 23(4), 259–276.

    Article  CAS  Google Scholar 

  105. Farhan, M., Ahmad, M., Kanwal, A., Butt, Z. A., Khan, Q. F., Raza, S. A., & Wahid, A. (2021). Biodegradation of chlorpyrifos using isolates from contaminated agricultural soil, its kinetic studies. Scientific Reports, 11(1), 10320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jabeen, H., Iqbal, S., & Anwar, S. (2015). Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a novel rhizobial strain Mesorhizobium sp HN3. Water and Environment Journal, 29(1), 151–160.

    Article  CAS  Google Scholar 

  107. Schenk, G., Mateen, I., Ng, T. K., Pedroso, M. M., Mitić, N., Jafelicci, M., & Ollis, D. L. (2016). Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coordination Chemistry Reviews., 317, 122–131.

    Article  CAS  Google Scholar 

  108. Ifediegwu, M. C., Agu, K. C., Awah, N. S., Mbachu, A. E., Okeke, C. B., Anaukwu, C. G., Uba, P. O., Ngenegbo, U. C., & Nwankwo, C. M. (2015). Isolation, growth and identification of chlorpyrifos degrading bacteria from agricultural soil in Anambra State, Nigeria. Universal Journal of Microbiology Research, 3(4), 46–52.

    Article  CAS  Google Scholar 

  109. Deng, S., Chen, Y., Wang, D., Shi, T., Wu, X., Ma, X., & Li, Q. X. (2015). Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp: G1. Journal of Hazardous Materials, 297, 17–24.

    Article  CAS  PubMed  Google Scholar 

  110. Aceves-Diez, A. E., Estrada-Castañeda, K. J., & Castañeda-Sandoval, L. M. (2015). Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils. Journal of Environmental Management, 157, 213–219.

    Article  CAS  PubMed  Google Scholar 

  111. Zuo, Z., Ting, G., You, C., Ruihua, L., Ping, X., Hong, J., & Chao, Y. (2015). Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation, 26, 223–233.

    Article  CAS  PubMed  Google Scholar 

  112. Akbar, S., & Sultan, S. (2016). Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Brazilian Journal of Microbiology, 47(3), 563–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Supreeth, M., & Raju, N. S. (2016). Bio-mineralization of Organophosphorous Insecticide-Chlorpyrifos and its Hydrolyzed product 3,5,6-Trichloro-2-Pyridinol by Staphylococcus sp. ES-2. Current World Environment, 11(2), 486–491.

    Article  Google Scholar 

  114. Liu, J., Tan, L., Wang, J., Wang, Z., Ni, H., & Li, L. (2016). Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere, 157, 200–207.

    Article  CAS  PubMed  Google Scholar 

  115. Abraham, J., & Silambarasan, S. (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pesticide Biochemistry and Physiology, 126(2016), 13–21.

    Article  CAS  PubMed  Google Scholar 

  116. Zhu, J., Zhao, Y. A. N., & Ruan, H. (2019). Comparative study on the biodegradation of chlorpyrifos-methyl by bacillus megaterium CM-Z19 and Pseudomonas syringae CM-Z6. Anais da Academia Brasileira de Ciencias, 91(3).

  117. Ishag, A. E. S. A., Abdelbagi, A. O., Hammad, A. M. A., Elsheikh, E. A. E., Elsaid, O. E., Hur, J. H., & Laing, M. D. (2016). Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. Journal of Agricultural and Food Chemistry, 64(45), 8491–8498.

    Article  CAS  PubMed  Google Scholar 

  118. Sharma, A., Pandit, J., Sharma, R., & Shirkot, P. (2016). Biodegradation of Chlorpyrifos by Pseudomonas resinovarans strain AST2.2 Isolated from Enriched Cultures. Current World Environment, 11(1), 267–278.

    Article  Google Scholar 

  119. Zhang, Q., Li, S., Ma, C., Wu, N., Li, C., & Yang, X. (2018). Simultaneous biodegradation of bifenthrin and chlorpyrifos by Pseudomonas sp. CB2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53(5), 304–312.

    CAS  Google Scholar 

  120. Lakshmipathy, M., Abirami, S. V., & Sudhakar, T. (2018). Biodegradation of organo phosphorous chlorpyrifos using Pseudomonas aeruginosa pf1 isolated from paddy field. Research Journal of Pharmacy and Technology, 11(5), 1725–1728.

    Article  Google Scholar 

  121. Murtaza, I., Bushra, Showkat, S., Ubaid-Ullah, S., Laila, O., Majid, S., & Sharma, G. (2018). A comparative study on biodegradation of chlorpyrifos by wild E. coli and Pseudomonas fluorescens bacterial isolates inhabiting different ecosystems of Kashmir valley. Current Science, 115(4), 753–758.

    Article  CAS  Google Scholar 

  122. Verma, S., Singh, D., & Chatterjee, S. (2020). Biodegradation of organophosphorus pesticide chlorpyrifos by Sphingobacterium sp. C1B, a psychrotolerant bacterium isolated from apple orchard in Himachal Pradesh of India. Extremophiles, 24(6), 897–908.

    Article  CAS  PubMed  Google Scholar 

  123. Aswani, P., Varghese, E. M., Muralidharan, M., & Jisha, M. S. (2018). Biodegradation of Chlorpyrifos by Pseudomonas Indica isolated from pesticide contaminated soil. Pesticide Research Journal, 30(1), 72–77.

    Article  CAS  Google Scholar 

  124. Nayak, T., Panda, A. N., Kumari, K., Adhya, T. K., & Raina, V. (2020). Comparative Genomics of a Paddy Field Bacterial Isolate Ochrobactrum sp. CPD-03: Analysis of Chlorpyrifos Degradation Potential. Indian Journal of Microbiology, 60(3), 325–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shi, T., Fang, L., Qin, H., Chen, Y., Wu, X., & Hua, R. (2019). Rapid biodegradation of the organophosphorus insecticide chlorpyrifos by Cupriavidus nantongensis x1T. International Journal of Environmental Research and Public Health, 16(23), 4593.

    Article  CAS  PubMed Central  Google Scholar 

  126. Varghese, E. M., P., A., & S., J. M. (2021). Strategies in microbial degradation enhancement of chlorpyrifos – a review based on the primary approaches in soil bioremediation. Biocatalysis and Biotransformation, 1–12.

  127. Ambreen, S., & Yasmin, A. (2020). Isolation, characterization and identification of organophosphate pesticide degrading bacterial isolates and optimization of their potential to degrade chlorpyrifos. International Journal of Agriculture and Biology, 24(4), 699–706.

    CAS  Google Scholar 

  128. Gotthard, G., Hiblot, J., Gonzalez, D., Elias, M., & Chabriere, E. (2013). Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. PLoS ONE, 8(11), e77995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Farnoosh, G., Khajeh, K., Mohammadi, M., Hassanpour, K., Latifi, A. M., & Aghamollaei, H. (2020). Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: A thermostability improvement mechanism. Journal of Biosciences, 45(1), 1–10.

    Article  Google Scholar 

  130. El-Sayed, G. M., Abosereih, N. A., Ibrahim, S. A., Abd El-Razik, A. B., Hammad, M. A., & Hafez, F. M. (2019). Cloning of the Organophosphorus Hydrolase (oph) Gene and Enhancement of Chlorpyrifos Degradation in the Achromobacter xylosoxidans Strain GH9OP via Mutation Induction. Jordan Journal of Biological Sciences, 12(3).

  131. Fu, G., Cui, Z., Huang, T., & Li, S. (2004). Expression, purification, and characterization of a novel methyl parathion hydrolase. Protein Expression and Purification, 36(2), 170–176.

    Article  CAS  PubMed  Google Scholar 

  132. Dong, Y. J., Bartlam, M., Sun, L., Zhou, Y. F., Zhang, Z. P., Zhang, C. G., & Zhang, X. E. (2005). Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. Journal of Molecular Biology, 353(3), 655–663.

    Article  CAS  PubMed  Google Scholar 

  133. Tiwari, B., Sindhu, V., Mishra, A. K., & Singh, S. S. (2020). Carbon Catabolite Repression of Methyl Parathion Degradation in a Bacterial Isolate Characterized as a Cupriavidus sp. LMGR1. Water, Air, and Soil Pollution, 231(7), 1–14.

    Article  CAS  Google Scholar 

  134. Liu, Z. (2017). Co-expression of methyl parathion hydrolase TCP degrading genes in genetically engineered bacterium. Atlantis Press. (p. 204–210).

  135. Chen, B., Lei, C., Shin, Y., & Liu, J. (2009). Probing mechanisms for enzymatic activity enhancement of organophosphorus hydrolase in functionalized mesoporous silica. Biochemical and Biophysical Research Communications, 390(4), 1177–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Purg, M., Pabis, A., Baier, F., Tokuriki, N., Jackson, C., & Kamerlin, S. C. L. (2016). Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 374). Royal Society of London.

  137. Ng, T. K., Gahan, L. R., Schenk, G., & Ollis, D. L. (2015). Altering the substrate specificity of methyl parathion hydrolase with directed evolution. Archives of Biochemistry and Biophysics, 573, 59–68.

    Article  CAS  PubMed  Google Scholar 

  138. Abdel-Razek, M. A. R. S., Folch-Mallol, J. L., Perezgasga-Ciscomani, L., Sánchez-Salinas, E., Castrejón-Godínez, M. L., & Ortiz-Hernández, M. L. (2013). Optimization of methyl parathion biodegradation and detoxification by cells in suspension or immobilized on tezontle expressing the opd gene. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 48(6), 449–461.

    CAS  Google Scholar 

  139. Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology. Frontiers Media S.A.

  140. Fan, J., Fu, A., & Zhang, L. (2019). REVIEW Progress in molecular docking. Quantitative Biology, 7(2), 83–89.

    Article  CAS  Google Scholar 

  141. Aslanli, A., & Efremenko, E. (2019). Simultaneous molecular docking of different ligands to His6-tagged organophosphorus hydrolase as an effective tool for assessing their effect on the enzyme. PeerJ, 7(9), e7684.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Efremenko, E. N., Lyagin, I. V., Cuong, L. H., & Huong, L. M. (2017). Antioxidants as stabilizers for His 6-OPH: Is this an unusual or regular role for them with enzymes?. The Journal of Biochemistry, 162(5), 327–334.

    Article  CAS  PubMed  Google Scholar 

  143. Kumar, S. S., Celin, S. M., Bishnoi, N. R., & Malyan, S. K. (2014). Phytoremediation of Recent Scientific research article phytoremediation of hmx contaminated soil through Jatropha curcas. 1445(5), 1444–1450.

  144. Jacquet, P., Daudé, D., Bzdrenga, J., Masson, P., Elias, M., & Chabrière, E. (2016). Current and emerging strategies for organophosphate decontamination: Special focus on hyperstable enzymes. Environmental Science and Pollution Research, 23(9), 8200–8218.

    Article  CAS  PubMed  Google Scholar 

  145. Lu, P., Liu, A., Liu, H., & Wang, J. (2019). Biodegradation of 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1 in liquid and soil enviroments, 1–23.

  146. Li, J., Huang, Y., Hou, Y., Li, X., Cao, H., Cui, Z., & Li, C. J. (2018). Novel Gene Clusters and Metabolic Pathway Involved in 3,5,6-Trichloro-2-Pyridinol Degradation by Ralstonia sp. Strain T6. Applied and environmental microbiology., 79(23), 7445–7453.

    Article  CAS  Google Scholar 

  147. Desai, C., Pathak, H., & Madamwar, D. (2010). Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresource Technology., 101(6), 1558–1569.

    Article  CAS  PubMed  Google Scholar 

  148. Dafale, N., Agrawal, L., Kapley, A., Meshram, S., Purohit, H., & Wate, S. (2010). Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic-oxic bioreactor system degrading azo dyes. Bioresource Technology, 101(2), 476–484.

    Article  CAS  PubMed  Google Scholar 

  149. Srivastava, S., Dafale, N. A., Jakhesara, S. J., Joshi, C. G., Patil, N. V., & Purohit, H. J. (2021). Unraveling the camel rumen microbiome through metaculturomics approach for agriculture waste hydrolytic potential. Archives of Microbiology, 203(1), 107–123.

    Article  CAS  PubMed  Google Scholar 

  150. Bombaywala, S., Dafale, N. A., Jha, V., Bajaj, A., & Purohit, H. J. (2021). Study of indiscriminate distribution of restrained antimicrobial resistome of different environmental niches. Environmental Science and Pollution Research, 28(9), 10780–10790.

    Article  PubMed  Google Scholar 

  151. Pieper, D. H., Martins Dos Santos, V. A. P., & Golyshin, P. N. (2004). Genomic and mechanistic insights into the biodegradation of organic pollutants. Current Opinion in Biotechnology.

  152. Bohra, V., Dafale, N. A., & Purohit, H. J. (2019). Understanding the alteration in rumen microbiome and CAZymes profile with diet and host through comparative metagenomic approach. Archives of Microbiology, 201(10), 1385–1397.

    Article  CAS  PubMed  Google Scholar 

  153. Parmar, K., Dafale, N., Pal, R., Tikariha, H., & Purohit, H. (2018). An Insight into Phage Diversity at Environmental Habitats using Comparative Metagenomics Approach. Current Microbiology, 75(2), 132–141.

    Article  CAS  PubMed  Google Scholar 

  154. Jeffries, T. C., Rayu, S., Nielsen, U. N., Lai, K., Ijaz, A., Nazaries, L., & Singh, B. K. (2018). Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Frontiers in Microbiology, 9(FEB), 1–12.

    CAS  Google Scholar 

  155. Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., & Reinhold-Hurek, B. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25(1), 28–36.

    Article  CAS  PubMed  Google Scholar 

  156. Behera, S. K., Kim, H. W., Oh, J. E., & Park, H. S. (2011). Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of the Total Environment, 409(20), 4351–4360.

    Article  CAS  Google Scholar 

  157. Mishra, P., Nilam, Tulsani, J., Subhash, Jakhesara, J., Nishant, & Joshi, G. (2020). Exploring the eukaryotic diversity in rumen of Indian camel (Camelus dromedarius) using 18S rRNA amplicon sequencing. Archives of Microbiology, 202, 1861–1872.

    Article  CAS  PubMed  Google Scholar 

  158. Math, R. K., Islam, S. M. A., Cho, K. M., Hong, S. J., Kim, J. M., Yun, M. G., & Yun, H. D. (2010). Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation, 21(4), 565–573.

    Article  CAS  PubMed  Google Scholar 

  159. Kambiranda, D. M., Asraful-Islam, S. M., Cho, K. M., Math, R. K., Lee, Y. H., Kim, H., & Yun, H. D. (2009). Expression of esterase gene in yeast for organophosphates biodegradation. Pesticide Biochemistry and Physiology, 94(1), 15–20. https://doi.org/10.1016/j.pestbp.2009.02.006.

    Article  CAS  Google Scholar 

  160. Rashamuse, K., Mabizela-Mokoena, N., Sanyika, T. W., Mabvakure, B., & Brady, D. (2012). Accessing carboxylesterase diversity from termite hindgut symbionts through metagenomics. Journal of Molecular Microbiology and Biotechnology, 22(5), 277–286.

    CAS  PubMed  Google Scholar 

  161. Feng, F., Ge, J., Li, Y., Cheng, J., Zhong, J., & Yu, X. (2017). Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese Chives (Allium tuberosum). Journal of Agricultural and Food Chemistry, 65(6), 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  162. Fang, L., Shi, T., Chen, Y., Wu, X., Zhang, C., Tang, X., & Hua, R. (2019). Kinetics and Catabolic Pathways of the Insecticide Chlorpyrifos, Annotation of the Degradation Genes, and Characterization of Enzymes TcpA and Fre in Cupriavidus nantongensis X1 T. Journal of Agricultural and Food Chemistry, 67(8), 2245–2254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Rahul Bhende is grateful to CSIR for the award of Junior Research Fellow (JRF) for pursuing Ph.D. work. Authors would like to thank Director, CSIR-NEERI, Nagpur, for providing the support and facilities. The manuscript has been checked for plagiarism by Knowledge Resource Centre, CSIR-NEERI, Nagpur, India, and assigned KRC no.: CSIR-NEERI/KRC/2021/MAY/EBGD/02.

Author information

Authors and Affiliations

Authors

Contributions

Rahul Bhende: investigation, writing original draft and review; Upasana Jhariya: in silico analysis, data curation, writing original draft and review; Shweta Srivastava: in silico analysis, data curation, writing original draft and review; Sakina Bombaywala: in silico analysis, data curation, writing (review and editing); Sanchita Das: writing (review and editing); Nishant A. Dafale: supervision, conceptualization, planning of in silico analysis, and finalization of the manuscript.

Corresponding author

Correspondence to Nishant A. Dafale.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors have read and approved the final version of the manuscript.

Consent of publication

All the work reported in the manuscript is original and has not yet been submitted in other journal. Authors agree to transfer the copyright of manuscript to the Applied Biochemistry and Biotechnology Journal upon acceptance for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhende, R.S., Jhariya, U., Srivastava, S. et al. Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives. Appl Biochem Biotechnol 194, 2301–2335 (2022). https://doi.org/10.1007/s12010-021-03713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03713-7

Keywords

Navigation