Skip to main content
Log in

Evidence of biodegradation of chlorpyrifos by a newly isolated heavy metal-tolerant bacterium Acinetobacter sp. strain MemCl4

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A bacterial strain, designated as MemCl4, capable of utilizing chlorpyrifos as sole source of carbon was isolated by enrichment culture from an agricultural soil sample of Burdwan District, West Bengal, India. It was identified as Acinetobacter sp. by using phenotypic and 16S rRNA gene-based molecular phylogenetic approach. The strain could degrade 98 % of chlorpyrifos within 144 h. Through thin layer chromatography, high-performance liquid chromatography and gas chromatography–mass spectrometry analyses, 3,5,6 trichloro-2-pyridinol (TCP) was identified as the only major intermediate during such degradation. The strain could also utilize TCP as sole source of carbon for growth. Degradation studies indicated utilization of chlorpyrifos with formation TCP, followed by decrease in amount of TCP with gradual passage of time. This indicated evidence of mineralization of both chlorpyrifos and TCP by the strain. The Gram-negative and esterase-positive strain was capable of tolerating various heavy metal salts such as arsenite, arsenate, cadmium, chromium, copper, iron, lead, nickel and zinc on sucrose low-phosphate medium. The strain MemCl4 might be considered biotechnologically potential for bioremediation and or restoration of chlorpyrifos-contaminated agricultural fields. This is the first report of a chlorpyrifos-degrading, heavy metal-tolerant bacterium belonging to the genus Acinetobacter, to the best of our knowledge. The strain, however, could not degrade chlorpyrifos in the presence of two heavy metal salts tested (viz. arsenate and zinc sulfate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Ei-Haleem D (2003) Acinetobacter: environmental and biotechnological applications. African J Biotech 2:71–74

    Article  Google Scholar 

  • Adriaens P, Focht DD (1991) Cometabolism of 3,4-dichlorobenzoate by Acinetobacter sp. strain 4-CB1. Appl Environ Microbiol 57:173–179

    Google Scholar 

  • Agrawal SB, Singh A, Sharma RK, Agrawal M (2007) Bioaccumulation of heavy metals in vegetables: a threat to human health. Terrest Aqua Environ Toxicol 1:13–23

    Google Scholar 

  • Ahemad M, Khan MS (2011) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. improves the growth and yield of greengram [Vigna radiate (L.) wilczek] in insecticide-stressed soils. Symbiosis 54:17–27

    Article  Google Scholar 

  • Ahlawat OP, Gupta P, Kumar S, Sharma DK, Ahlawat K (2010) Bioremediation of fungicides by Spent Mushroom substrate and its associated Microflora. Indian J Microbiol 50:390–395. doi:10.1007/s12088-011-0067-8

    Article  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticide use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Amor L, Kennes C, Veiga MC (2001) Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour Technol 78:181–185

    Article  Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405. doi:10.1016/j.jhazmat.2009.02.059

    Article  Google Scholar 

  • Armbrust KL (2001) Chlorothalonil and chlorpyrifos degradation products in golf course leachate. Pest Manag Sci 57:797–802

    Article  Google Scholar 

  • Arora PK, Sasikala C, Ramana CV (2012) Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93:2265–2277

    Article  Google Scholar 

  • Arya R, Sharma A (2014) Screening, isolation and characterization of Brevibacillus borstelensis for the bioremediation of Carbendazim. J Environ Sci Sustain 2:12–14

    Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160:83–89

    Article  Google Scholar 

  • Banerjee I, Tripathi SK, Sinha Roy A, Sengupta P (2014) Pesticide use pattern among farmers in a rural district of West Bengal, India. J Nat Sci Biol Med 5:313–316. doi:10.4103/0976-9668.136173

    Article  Google Scholar 

  • Barbe V, Vallenet D, Fonknechten N, Kremeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissen-bach J, Marliere P, Cohen GN, Medigue C (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation comprtent bacterium. Nucleic Acids Res 32:5766–5779

    Article  Google Scholar 

  • Betancourt AM, Burgess SC, Carr RL (2006) Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain. Toxicol Sci 92:500–506

    Article  Google Scholar 

  • Bhagobaty RK, Malik A (2008) Utilization of chlorpyrifos as a sole source of carbon by bacteria isolated from wastewater irrigated agricultural soils in an industrial area of western Uttar Pradesh, India. Res J Microbiol 3:293–307

    Article  Google Scholar 

  • Chao S, Jiang LQ, Zhang WJ (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skept Crit 3:24–38

    Google Scholar 

  • Chen S, Hu M, Liu J, Zhong G, Yang L (2011a) Biodegradation of betacypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DGS-1. J Hazard Mater 187:433–440

    Article  Google Scholar 

  • Chen S, Yang L, Hu M, Liu J (2011b) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767

    Article  Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS ONE 7:e47205. doi:10.1371/journal.pone.0047205

    Article  Google Scholar 

  • Chen S, Chang C, Deng Y, An S, Dong YH (2014) Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potentials for bioremediation of pyrethroid contaminated soils. J Agric Food Chem 62:2147–2157

    Article  Google Scholar 

  • Cheng TC, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140

    Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. doi:10.1099/ijs.0.64915-0

    Article  Google Scholar 

  • Cycoń M, Wojcik M, Piotrowska-Seget Z (2011) Biodegradation kinetics of the benzimidazole fungicide thiophanate-methyl by bacteria isolated from loamy sand soil. Biodeg 22:573–583

    Article  Google Scholar 

  • Cyraniak E, Draszawka-Bołzan B (2014) Heavy metals in circulation biogeochemical. World Sci News 4:30–36

    Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterse from Pseudomonas diminuta. J Biol Chem 264:19659–19665

    Google Scholar 

  • El-Deeb B, Abdullah D, Altalhi AD (2009) Degradative plasmid and heavy metal resistance plasmid naturally coexist in phenol and cyanide assimilating bacteria. Am J Biochem Biotechnol 5:84–93

    Article  Google Scholar 

  • Fang H, Xiang YQ, Hao YJ, Chu XQ, Pan XD (2008) Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi. Int Biodeter Biodeg 16:294–303. doi:10.1016/j.ibiod.2007.10.001

    Article  Google Scholar 

  • Fang-Yao L, Ming-zhang H, Dan-mei L, Ya-wen L, Pei-shun S, Hai Y, Guo-qing S (2007) Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J Environ Sci 19:1257–1260

    Article  Google Scholar 

  • Gao Y, Chen S, Hu M, Hu Q, Luo J, Li Y (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS ONE 6:e38137. doi:10.1371/journal.pone.0038137

    Article  Google Scholar 

  • Ghosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial biodegradation of organophosphate pesticides. Int J Biotech Biochem 6:871–876

    Google Scholar 

  • Huang Y, Li YX, Yang J, Xu MM, Sun B, Gao FW, Wang N (2014) Harmful chemicals in soil and risk assessment of an abandoned open dumpsite in eastern China. J Chem. doi:10.1155/2015/297686

    Google Scholar 

  • Jabeen H, Iqbal S, Anwar S (2015) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a novel rhizobial strain Mesorhizobium sp. HN3. Water Environ J 29:151–160. doi:10.1111/wej.12081

    Article  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant bacteria Burkholderia sp. From heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164

    Article  Google Scholar 

  • Johnson JL (1994) Similarity analysis of rRNA. In: Gerhard P, Murray RG, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 683–700

    Google Scholar 

  • Jung J, Baek J-H, Park W (2010) Complete genome sequence of the diesel-degrading Acinetobacter sp. strain DR1. J Bacterol 192:4794–4795. doi:10.1128/JB.00722-10

    Article  Google Scholar 

  • Kanekar PP, Bhadbhade BJ, Deshpande NM (2004) Biodegradation of organophosphate pesticides. Proc Indian Natl Sci Acad B70:57–70

    Google Scholar 

  • KaviKarunya S, Reetha D (2012) Biological degradation of chlorpyrifos and monocrotophos by bacterial isolates. Int J Pharm Biol Arch 3:685–691

    Google Scholar 

  • Kavitha P, Rao JV (2008) Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environ Toxicol Pharmacol 26:192–198

    Article  Google Scholar 

  • Kim JR, Ahn YJ (2008) Identification and characterization of chlorpyrifos-methyl and 3,5,6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100. Biodeg 20:487–497. doi:10.1007/s10532-008-9238-7

    Article  Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225. doi:10.1007/s00374-010-0505-5

    Article  Google Scholar 

  • Latifi AM, Khodi S, Mirzaei M, Miresmaeilli M, Babavalian H (2012) Isolation and characterization of five chlorpyrifos degrading bacteria. Afr J Biotechnol 11:3140–3146

    Google Scholar 

  • Li J, Liu J, Shen W, Zhao X, Hou Y, Cao H, Cui Z (2010) Isolation and characterization of 3,5,6-trichloro-2-pyridinol-degrading Ralstonia sp. strain T6. Bioresour Technol 101:7479–7483. doi:10.1016/j.biortech.2010.04.030

    Article  Google Scholar 

  • Li J, Huang Y, Hou Y, Li X, Cao H, Cui Z (2013) Novel gene cluster andmetabolic pathway involved in 3,5,6-trichloro-2-pyridinol degradation by Ralstonia sp. strain T6. Appl Environ Microbiol 79:7445–7453. doi:10.1128/AEM.01817-13

    Article  Google Scholar 

  • Lin C-W, Chen S-Y, Cheng Y-W (2006) Effect of metals on biodegradation kinetics for methyl tert-butyl ether. Biochem Eng J 32:25–32

    Article  Google Scholar 

  • Longkumar T, Parthasarathy S, Vemuri SG, Siddavattam D (2014) OxyR-dependent expression of a novel glutathione S-tranferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of Organophosphate insecticides. Microbiol 160:102–112. doi:10.1099/mic.0.070664-0

    Article  Google Scholar 

  • Luo L, Ma Y, Zhang S, Wei D, Zhu YG (2009) Inventory of trace element inputs to agricultural soils in China. J Environ Manage 90:2524–2530

    Article  Google Scholar 

  • Manclus JJ, Montoya A (1995) Development of immunossays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Anal Chim Acta 311:341–348

    Article  Google Scholar 

  • Ofoegbu CJ, Akubugwo EI, Dike CC, Maduka HCC, Ugwu CE, Obasi NA (2013) Effects of heavy metals on soil enzymatic activities in the Ishiagu Mmining area of Ebonyi State-Nigeria. IOSR J Environ Sci Toxicol Food Technol 5:66–71

    Article  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  Google Scholar 

  • Pandey S, Saha P, Biswas S, Maiti TK (2011) Characterization of two heavy metal resistant Bacillus strains isolated from slag disposal site at Burnpur. Ind. J Environ Biol 32:773–779

    Google Scholar 

  • Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contamin Toxicol 131:1–154

    Google Scholar 

  • Rahman HA, Zaim FA (2015) Concentration level of heavy metals in soil at vegetables areas in Kota Bharu, Kelantan, Malaysia. Int J Environ Sci Develop 6:843–848

    Article  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293. doi:10.1038/ncomms2296

    Article  Google Scholar 

  • Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo dry valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561. doi:10.1099/00207713-50-4-1553

    Article  Google Scholar 

  • Roychowdhury R, Tah J (2011) Differential response by different parts of Solanum melongena L. for heavy metal accumulation. Plant Sci Feed 6:80–83

    Google Scholar 

  • Saha P, Chakrabarti T (2006) Emticicia oligorophica gen nov., a new member of the family’ Flexibacteraceae’, phylum Bacteroidetes. Int J Syst Evol Microbiol 56:991–995. doi:10.1099/ijs.0.64086-0

    Article  Google Scholar 

  • Shafiq-Ur-Rehman RS, Waliullah MIS (2012) Chlorpyrifos-induced neuro-oxidative damage in bee. Toxicol Environ Health Sci 4:30–36

    Article  Google Scholar 

  • Shields MS, Hooper SW, Sayler S (1985) Plasmid-mediated mineralization of 4-chlorobiphenyl. J Bacterol 163:882–889

    Google Scholar 

  • Singh BK (2009) Organophosphorous-degrading bacteria: ecology and industrial applications. Nat Rev/Microbiol 7:156–164. doi:10.1038/nrmicro2050

    Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorous compounds. FEMS Microbiol Rev 30:428–471. doi:10.1111/j.1574-6976.2006.00018.x

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhard P, Murray RG, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  • Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  Google Scholar 

  • Waseem A, Arshad J, Iqbal F, Sajjad A, Mehmood Z, Murtaza G (2014) Pollution Status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed Res Int. doi:10.1155/2014/813206

    Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Environ Sci Technol 17:582–590

    Article  Google Scholar 

  • Xiao W, Wang H, Li T, Zhu Z, Zhang J, He Z, Yang X (2012) Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pollut Res. doi:10.1007/s11356-012-0902-4

    Google Scholar 

  • Xu GM, Zheng W, Li YY, Wang SH, Zhang JS, Yan YC (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeter Biodeg 62:51–56. doi:10.1016/j.ibiod.2007.12.001

    Article  Google Scholar 

  • Yeom SH, Yoo YJ (1997) Overcoming the inhibitory effects of metal ions in the degradation of benzene and toluene by Alcaligenes xylosoxidans Y234. Korean J of Chem Eng 14:204–208

    Article  Google Scholar 

  • Zarcinas BA, Pongsakul P, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in south-east Asia. 1, Peninsular Malaysia. Environ Geochem Health 26:343–357

    Article  Google Scholar 

  • Zhang X, Huang Y, Harvey PR, Li H, Ren Y, Li J, Wang J, Yang H (2013) Isolation and characterization of Carbendazim degrading Rhodococcus erythropolis djl-11. Plose One 8:e74810

    Article  Google Scholar 

  • Zhao L, Wang F, Zhao J (2014) Identification and functional characteristics of chlorpyrifos degrading and plant growth promoting bacterium Acinetobacter calcoaceticus. J Basic Microbiol 54:457–463

    Article  Google Scholar 

  • Zilli M, Palazzi E, Sene L, Converti A, Borghi MD (2001) Toluene and styrene removal from air in biofilters. Process Biochem 10:423–429

    Article  Google Scholar 

  • Zwieten LV, Ayres MR, Morris SG (2003) Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environ Pollut 124:331–339

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. S. Shivaji, (former scientist of CCMB, Hyderabad) for his help in DNA sequencing, Dr. W. Ghosh, Microbiology Department, Bose Institute, Kolkata, for useful suggestions and discussions and Mr. Swaroop Biswas of CIF, Bose Institute, Kolkata, for his help in HPLC. We are grateful to Dr. T. J Abraham, Department of fishery pathology and Microbiology, WBUFS, Kolkata, for Vitek analysis. We are grateful to SERB, New Delhi, for financial support through project (No. SR/FT/LS-109/2010). SP was supported by a state fellowship through Burdwan University; KSG is supported by DST-INSPIRE fellowship (IF120104); and UG was supported by project assistantship from SERB project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Saha.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pailan, S., Sengupta, K., Ganguly, U. et al. Evidence of biodegradation of chlorpyrifos by a newly isolated heavy metal-tolerant bacterium Acinetobacter sp. strain MemCl4. Environ Earth Sci 75, 1019 (2016). https://doi.org/10.1007/s12665-016-5834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5834-8

Keywords

Navigation