Skip to main content
Log in

Chlorpyrifos: pollution and remediation

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The widespread use of pesticides in modern agriculture is of increasing concern due to environmental contamination and subsequent biodiversity loss. Chlorpyrifos is a toxic organophosphate pesticide. Repeated applications of chlorpyrifos modify the soil microbial community structure and pose potential health risks to the other nontargets. Chlorpyrifos has been reported as the second most commonly detected pesticide in food and water. Extensive use of chlorpyrifos in agriculture and persistence in the environment have raised public concern and demand for safe technologies to overcome the pollution and toxicity problems. Here, we review pollution and toxicity issues associated with chlorpyrifos use and discuss strategies to solve pesticide contamination. Chlorpyrifos, previously shown to be resistant to enhanced degradation, has now been proved to undergo enhanced microbe-mediated decay. Here, special emphasis is given to degradation methods such as ozonation, Fenton treatment, photodegradation, and advanced oxidation processes along with microbial degradation. Finally, we focus on degradation process at enzyme and molecular levels which will enable us to elucidate the exact degradative pathway involved in biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adesodun JK, Davidson DA, Hopkins DW (2005) Micromorphological evidence for changes in soil faunal activity following application of sewage sludge and biocide. Appl Soil Ecol 29(1):39–45. doi:10.1016/j.apsoil.2004.09.004

    Google Scholar 

  • Affam AC, Chaudhuri M (2013) Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. J Environ Manage 130:160–165. doi:10.1016/j.jenvman.2013.08.058

    CAS  Google Scholar 

  • AgroNews (2013) 2012 China’s Major Pesticides Varieties Tracking – chlorpyrifos. http://newsagropagescom/News/NewsDetail%e2%80%948993htm

  • Ahmed S, Ahmad MS (2006) Effect of insecticides on the total number of soil bacteria under laboratory and field conditions. Pak Entomol 28(2):63–68

    Google Scholar 

  • Ajaz M, Jabeen N, Ali TA, Rasool SA (2009) Split role of plasmid genes in the degradation of chlorpyrifos by indigenously isolated Pseudomonas putida Mas-1. Pak J Bot 41(4):2055–2060

    Google Scholar 

  • Alavanja MCR et al (2003) Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. Am J Epidemiol 157(9):800–814

    Google Scholar 

  • Ali D, Nagpure NS, Kumar S, Kumar R, Kushwaha B, Lakra WS (2009) Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem Toxicol 47(3):650–656. doi:10.1016/j.fct.2008.12.021

    CAS  Google Scholar 

  • Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Tech 37(5):487–496. doi:10.1016/j.enzmictec.2004.07.024

    CAS  Google Scholar 

  • Aniladevi Kunjamma KP, Philip B, Smitha V, Bhanu SV, Jose J (2008) Histopathological effects on Oreochromis mossambicus (Tilapia) exposed to chlorpyrifos. J Environ Res Develop 2(4):553–559

    Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168(1):400–405. doi:10.1016/j.jhazmat.2009.02.059

    CAS  Google Scholar 

  • Barathidasan K, Reetha D, Milton DJ, Sriram N, Govindammal M (2014) Biodegradation of chlorpyrifos by co-culture of Cellulomonas fimi and Phanerochaete chrysosporium. Afr J Microbiol Res 8(9):961–966. doi:10.5897/AJMR2013.6530

    CAS  Google Scholar 

  • Barman DN, Haque MA, Islam SMA, Yun HD, Kim MK (2014) Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos. Ecotoxicol Environ Saf 108:135–141. doi:10.1016/j.ecoenv.2014.06.023

    CAS  Google Scholar 

  • Barron MG, Woodburn KB (1995) Ecotoxicology of chlorpyrifos. Rev Environ Contam Toxicol 144:1–93

    CAS  Google Scholar 

  • Barros FCF, Barros AL, Silva MA, do Nascimento RF (2013) Use of microwave-assisted oxidation for removal of the pesticide chlorpyrifos from aqueous media. Int J Civil Environ Eng 13(6):16–27

    Google Scholar 

  • Bassey IY, Effiong EB, Archibong UD, Ita WU (2015) Germination and root nodule formation of soybean (Glycine max (L.) Merr.) in ridomil and chlorpyriphos treated soil. American. Journal of Environmental Protection 4(1):17–22. doi:10.11648/j.ajep.20150401.12

    Google Scholar 

  • Bigley AN, Raushel FM (2013) Catalytic mechanisms for phosphotriesterases. Biochim Biophys Acta Proteins Proteom 1:443–453. doi:10.1016/j.bbapap.2012.04.004

    Google Scholar 

  • Blakley BR, Yole MJ, Brousseau P, Boermans H, Fournier M (1999) Effect of chlorpyrifos on immune function in rats. Vet Hum Toxicol 41(3):140–144

    CAS  Google Scholar 

  • Bondarenko S, Gan J (2004) Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments. Environ Toxicol Chem 23(3):1809–1814

    CAS  Google Scholar 

  • Bondarenko S, Gan J, Haver DL, Kabashima JN (2004) Persistence of selected organophosphate and carbamate insecticides in waters from a coastal watershed. Environ Toxicol Chem 23(11):2649–2654

    CAS  Google Scholar 

  • Briceno G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeter Biodegr 73:1–7. doi:10.1016/j.ibiod.2012.06.002

    CAS  Google Scholar 

  • Brown KA (1980) Phosphotriesterases of Flavobacterium sp. Soil Biol Biochem 12(2):105–112. doi:10.1016/0038-0717(80)90044-9

    CAS  Google Scholar 

  • Budd R, O’geen A, Goh KS, Bondarenko S, Gan J (2011) Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere 83(11):1581–1587. doi:10.1016/j.chemosphere.2011.01.012

    CAS  Google Scholar 

  • Bumpus JA, Kakar SN, Coleman RD (1993) Fungal degradation of organophosphorous insecticides. Appl Biochem Biotechnol 399(1):715–726

    Google Scholar 

  • Caceres T, He W, Naidu R, Megharaj M (2007) Toxicity of chlorpyrifos and TCP alone and in combination to Daphnia carinata: the influence of microbial degradation in natural water. Water Res 41(19):4497–4503

    CAS  Google Scholar 

  • Carr RL, Ho LL, Chambers JE (1997) Selective toxicity of chlorpyrifos to several species of fish during an environmental exposure: biochemical mechanisms. Environ Toxicol Chem 16(11):2369–2374. doi:10.1002/etc.5620161124

    CAS  Google Scholar 

  • Chai LK, Mohd-Tahir N, Bruun Hansen HC (2009) Dissipation of acephate, chlorpyrifos, cypermethrin and their metabolites in a humid-tropical vegetable production system. Pest Manag Sci 65(2):189–196. doi:10.1002/ps.1667

    CAS  Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS ONE 7:1–12. doi:10.1371/journal.pone.0047205

    CAS  Google Scholar 

  • Cheng T-C, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59(9):3138–3140

    CAS  Google Scholar 

  • Chino-Flores C et al (2012) Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation 23(3):387–397. doi:10.1007/s10532-011-9517-6

    CAS  Google Scholar 

  • Chishti Z, Arshad M (2012) Growth linked biodegradation of chlorpyrifos by Agrobacterium and Enterobacter spp. Int J Agric Biol 15(1):19–26

    Google Scholar 

  • Cho CM-H, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685. doi:10.1128/AEM.70.8.4681-4685.2004

    CAS  Google Scholar 

  • Clark JR, Patrick JM, Middaugh DP, Moore JC (1985) Relative sensitivity of six estuarine fishes to carbophenothion, chlorpyrifos, and fenvalerate. Ecotoxicol Environ Saf 10(3):382–390. doi:10.1016/0147-6513(85)90083-1

    CAS  Google Scholar 

  • Corbin M, Daiss R, Wolf JK, Hurley P, Spatz D, Branch ERA (2009) Risks of chlorpyrifos use to federally threatened & endangered california red-legged frog (Rana aurora draytonii), California tiger salamander (Ambystoma californiense), San Francisco garter

  • Cortina-Puig M, Istamboulie G, Marty J-L, Noguer T (2010) Analysis of pesticide mixtures using intelligent biosensors. INTECH Open Access Publisher

  • Costa E et al (2015) Effect of neurotoxic compounds on ephyrae of Aurelia aurita jellyfish. Hydrobiologia. doi:10.1007/s10750-015-2284-3

    Google Scholar 

  • Cui Y, Guo J, Xu B, Chen Z (2011) Genotoxicity of chlorpyrifos and cypermethrin to ICR mouse hepatocytes. Toxicol Mech Methods 21(1):70–74. doi:10.3109/15376516.2010.529192

    CAS  Google Scholar 

  • Dam K, Seidler FJ, Slotkin TA (2000) Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. Brain Res Dev Brain Res 121(2):179–187

    CAS  Google Scholar 

  • Dawson LA et al (2003) Influence of pasture management (nitrogen and lime addition and insecticide treatment) on soil organisms and pasture root system dynamics in the field. Plant Soil 255(1):121–130

    CAS  Google Scholar 

  • De Angelis S et al (2009) Developmental exposure to chlorpyrifos induces alterations in thyroid and thyroid hormone levels without other toxicity signs in cd1 mice. Toxicol Sci 108(2):311–319. doi:10.1093/toxsci/kfp017

    Google Scholar 

  • de Oliveira AG, Ribeiro JP, de Oliveira JT, De Keukeleire D, Duarte MS, do Nascimento RF (2014) Degradation of the pesticide chlorpyrifos in aqueous solutions with UV/H2O2: optimization and effect of interfering anions. J Adv Oxid Technol 17(1):133–138

    Google Scholar 

  • De Silva P, Samayawardhena LA (2002) Low concentrations of lorsban in water result in far reaching behavioral and histological effects in early life stages in guppy. Ecotoxicol Environ Saf 53(2):248–254. doi:10.1002/etc.5620161122

    Google Scholar 

  • DeLorenzo ME, Serrano L (2003) Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. J Environ Sci Health B 38(5):529–538

    Google Scholar 

  • Derbalah A, Ismail A, Shaheen S (2013) Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water. Pol J Chem Technol 15(3):25–34. doi:10.2478/pjct-2013-0040

    CAS  Google Scholar 

  • Devi LG, Murthy BN, Kumar SG (2009) Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light. J Mol Catal A: Chem 308(1):174–181. doi:10.1016/j.molcata.2009.04.007

    CAS  Google Scholar 

  • Devipriya S, Yesodharan S (2005) Photocatalytic degradation of pesticide contaminants in water. Sol Energ Mat Sol C 86(3):309–348. doi:10.1016/j.solmat.2004.07.013

    CAS  Google Scholar 

  • Di Sioudi BD, Miller CE, Lai K, Grimsley JK, Wild JR (1999) Rational design of organophosphorus hydrolase for altered substrate specificities. Chem-Biol Interact 119:211–223. doi:10.1016/S0009-2797(99)00030-7

    Google Scholar 

  • Domenech X, Jardim WF, Litter MI (2004) Advanced oxidation processes for contaminant removal. In: Blesa MA, Sánchez B (eds) Contaminants removal by heterogeneous photocatalysis. Editorial CIEMAT, Madrid

    Google Scholar 

  • Dow AgroSciences (2013) Re Organophosphate and Carbamate Reassessment (APP201045) Submission 102675 Appendix A Chlorpyrifos Environmental Protection Authority, Wellington. http://www.epa.govt.nz/search-databases/HSNO%20Application%20Register%20Documents/APP201045_Submission%20102675%20Appendix%20A%20Chlorpyrifos.pdf

  • Dubey KK, Fulekar MH (2011) Effect of pesticides on the seed germination of Cenchrus setigerus and Pennisetum pedicellatum as monocropping and co-cropping system: implications for rhizospheric bioremediation. Rom Biotech Letters 16:5908–5918

    Google Scholar 

  • Dubey KK, Fulekar MH (2012) Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. W J Microbiol Biotechnol 28(4):1715–1725

    CAS  Google Scholar 

  • Duirk SE, Collette TW (2005) Organophosphate pesticide degradation under drinking water treatment conditions. US Environmental Protection Agency Office of Research and Development, EPA/600/R-05/103, Washington, DC

  • Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264(33):19659–19665

    CAS  Google Scholar 

  • Dutta M, Sardar D, Pal R, Kole RK (2010) Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil. Environ Monit Assess 160(1–4):385–391. doi:10.1007/s10661-008-0702-y

    CAS  Google Scholar 

  • Eamkamon T, Klinbunga S, Thirakhupt K, Menasveta P (2012) Acute toxicity and neurotoxicity of chlorpyrifos in black tiger shrimp, Penaeus monodon. Environ Asia 5(1):26–31

    Google Scholar 

  • Eddins D, Cerutti D, Williams P, Linney E, Levin ED (2009) Developmental chlorpyrifos causes behavioral and neurochemical defects in zebrafish. Neurotoxicol Teratol 32(2):99–108. doi:10.1016/j.ntt.2009.02.005

    Google Scholar 

  • EFSA (2005) Review report for the active substance chlorpyrifos. SANCO/3059/99 - rev. 1.5 European Food Safety Authority. http://eceuropaeu/sanco_pesticides/public/indexcfm?event=activesubstanceselection

  • Eissa FI, Mahmoud HA, Massoud ON, Ghanem KM, Gomaa IM (2014) Biodegradation of chlorpyrifos by microbial strains isolated from agricultural wastewater. J Am Sci 10(3):98–108

    Google Scholar 

  • El-Helow ER, Badawy MEI, Mabrouk MEM, Mohamed EAH, El-Beshlawy YM (2013) Biodegradation of chlorpyrifos by a newly isolated Bacillus subtilis strain, Y242. Biorem J 17(2):113–123. doi:10.1080/10889868.2013.786019

    CAS  Google Scholar 

  • Engel LS et al (2005) Pesticide use and breast cancer risk among farmer’s wives in the agricultural health study. Am J Epidemiol 161(2):121–135

    Google Scholar 

  • Esplugas S, Gimenez J, Contreras S, Pascual E, Rodríguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36(4):1034–1042. doi:10.1016/S0043-1354(01)00301-3

    CAS  Google Scholar 

  • Fadaei A, Kargar M (2013) Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresen Environ Bull 22(8A):2442–2447

    CAS  Google Scholar 

  • Fang H, Xiang YQ, Hao YJ, Chu XQ, Pan XD, Yu JQ, Yu YL (2008) Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi. Int Biodeter Biodegr 61(4):294–303. doi:10.1016/j.ibiod.2007.10.001

    CAS  Google Scholar 

  • Farag AT, El Okazy AM, El-Aswed AF (2003) Developmental toxicity study of chlorpyrifos in rats. Reprod Toxicol 17(2):203–208

    CAS  Google Scholar 

  • Felsot AS, Racke KD, Hamilton DJ (2003) Disposal and degradation of pesticide waste. In: Reviews of environmental contamination and toxicology. Springer, pp 123–200

  • Femia J, Mariani M, Zalazar C, Tiscornia I (2013) Photodegradation of chlorpyrifos in water by UV/H2O2 treatment: toxicity evaluation. Water Sci Technol 68(10):2279–2286. doi:10.2166/wst.2013.493

  • Flaskos J (2012) The developmental neurotoxicity of organophosphorus insecticides: a direct role for the oxon metabolites. Toxicol Lett 209(1):86–93

    CAS  Google Scholar 

  • Fortenberry GZ, Hu H, Turyk M, Barr DB, Meeker JD (2012) Association between urinary 3,5,6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum T4 and TSH in NHANES 1999-2002. Sci Total Environ 424:351–355. doi:10.1016/j.scitotenv.2012.02.039

    CAS  Google Scholar 

  • Gange AC, Brown VK, Farmer LM (1992) Effects of pesticides on the germination of weed seeds: implications for manipulative experiments. J Appl Ecol 29(2):303–310. doi:10.2307/2404499

    Google Scholar 

  • Gao Y, Chen S, Hu M, Hu Q, Luo J, Li Y (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS ONE 7(6):e38137. doi:10.1371/journal.pone.0038137

    CAS  Google Scholar 

  • Garg A, Mehetre S, Sherkhane P, Eapen S, Kale SP (2010) Biodegradation of C-14-chlorpyrifos by hairy root culture of Chenopodium amaranticolor Coste & Reynier. Curr Sci India 99(7):896–898

    CAS  Google Scholar 

  • Gebremariam SY, Beutel MW, Yonge DR, Flury M, Harsh JB (2012) Adsorption and desorption of chlorpyrifos to soils and sediments. In: Reviews of environmental contamination and toxicology. Springer, pp 123–175. doi:10.1007/978-1-4614-1463-6_3

  • Ghanem I, Orfi M, Shamma M (2007) Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in damascus. Folia Microbiol (Praha) 52(4):423–427

    CAS  Google Scholar 

  • Gilani STS, Ageen M, Shah H, Raza S (2010) Chlorpyrifos degradation in soil and its effect on soil microorganisms. J Anim Pant Sci 20(2):99–102

    Google Scholar 

  • Green AS, Chandler TG, Piegorsch WW (1996) Life stage specific toxicity of sediment-associated chlorpyrifos to a marine, infaunal copepod. Environ Toxicol Chem 15(7):1182–1188

    CAS  Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage. US EPA, Washington, DC

    Google Scholar 

  • Guha A, Kumari B, Bora TC, Roy MK (1997) Possible involvement of plasmids in degradation of malathion and chlorpyriphos by Micrococcus sp. Folia Microbiol 42(6):574–576

    CAS  Google Scholar 

  • Gvozdenac S, Indic D, Vukovic S (2013) Phytotoxicity of chlorpyrifos to white mustard (Sinapis alba L) and maize (Zea mays L): potential indicators of insecticide presence in water. Pesticidi i fitomedicina 28(4):265–271. doi:10.2298/PIF1304265G

    CAS  Google Scholar 

  • Harishankar MK, Sasikala C, Ramya M (2013) Efficiency of the intestinal bacteria in the degradation of the toxic pesticide, chlorpyrifos. Biotech 3(2):137–142. doi:10.1007/s13205-012-0078-0

    Google Scholar 

  • Hastings FL, Coster JE (1981) Field and laboratory evaluations of insecticides for southern pine beetle control United States Department of Agriculture, Southeastern Experiment Station, Forest Service, General Technical Report SE-21

  • Hatzios KK (1991) Biotransformations of herbicides in higher plants. In: Grover R, Cessna AJ (eds) Environmental chemistry of, vol 2. CRC Press, Boca Raton, pp 141–185

    Google Scholar 

  • Haviland JA, Butz DE, Porter WP (2010) Long-term sex selective hormonal and behaviour alterations in mice exposed to low doses of chlorpyrifos in utero. ReproduToxicol 29(1):74–79. doi:10.1016/j.reprotox.2009.10.008

    CAS  Google Scholar 

  • Hayward SJ, Gouin T, Wania F (2009) Levels and seasonal variability of pesticides in the rural atmosphere of Southern Ontario. J Agric Food Chem l 58(2):1077–1084. doi:10.1021/jf902898f

    Google Scholar 

  • Hill BR (2006) Drift Catcher reveals unacceptable levels of chlorpyrifos in air. Community action, Pesticide News 73. http://wwwpan-ukorg/pestnews/Issue/pn73/pn73p12pdf

  • Hindumathy CK, Gayathri V (2013) Effect of pesticide (chlorpyrifos) on soil microbial flora and pesticide degradation by strains isolated from contaminated soil. J Bioremed Biodegrad 4(178):1–6. doi:10.4172/2155-6199.1000178

    Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002) Identification of an OPD (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68(7):3371–3376. doi:10.1128/AEM.68.7.3371-3376.2002

    CAS  Google Scholar 

  • Hossain MS, Fakhruddin ANM, Chowdhury MAZ, Alam MK (2013) Degradation of chlorpyrifos, an organophosphorus insecticide in aqueous solution with gamma irradiation and natural sunlight. J Environ Chem Eng 1(3):270–274. doi:10.1016/j.jece.2013.05.006

    CAS  Google Scholar 

  • Howard PH (1991) Handbook of environmental fate and exposure data: for organic chemicals, volume III pesticides, vol 3. CRC Press, Lewis publishers, Chelsea

  • Howard JH, Julian SE, Ferrigan J (2003) Golf course maintenance: impact of pesticides on amphibians. Golf Course Mon 94–101. doi:10.1007/s00244-005-0264-8

  • Hua F, Yunlong YU, Xiaoqiang CHU, Xiuguo W, Xiaoe Y, Jingquan YU (2009) Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J Environ Sci 21(3):380–386. doi:10.1016/S1001-0742(08)62280-9

    Google Scholar 

  • Ikehata K, El-Din MG (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and fenton-type advanced oxidation processes: a review. J Environ Eng Sci 5(2):81–135

    CAS  Google Scholar 

  • Ismail M, Khan HM, Sayed M, Cooper WJ (2013) Advanced oxidation for the treatment of chlorpyrifos in aqueous solution. Chemosphere 93(4):645–651. doi:10.1016/j.chemosphere.2013.06.051

    CAS  Google Scholar 

  • Istamboulie G, Durbiano R, Fournier D, Marty J-L, Noguer T (2010) Biosensor-controlled degradation of chlorpyrifos and chlorfenvinfos using a phosphotriesterase-based detoxification column. Chemosphere 78(1):1–6. doi:10.1016/j.chemosphere.2009.10.037

    CAS  Google Scholar 

  • Jarvinen AW, Tanner DK, Kline ER (1988) Toxicity of chlorpyrifos, endrin, or fenvalerate to fathead minnows following episodic or continuous exposure. Ecotoxicol Environ Saf 15(1):78–95

    CAS  Google Scholar 

  • Jastrzebska E (2011) The effect of chlorpyrifos and teflubenzuron on the enzymatic activity of soil. Pol J Envron Stud 20(4):903

    CAS  Google Scholar 

  • Jin-Clark Y, Lydy MJ, Zhu KY (2002) Effects of atrazine and cyanazine on chlorpyrifos toxicity in Chironomus tentans (Diptera: Chironomidae). Environ Toxicol Chem 21(3):598–603

    CAS  Google Scholar 

  • John EM, Rebello S, Jisha MS (2014) Chlorpyrifos degradation using bacterial consortium obtained from soil. Int J Environ Eng–IJEE 1(4):91–94

  • Johnsen K, Jacobsen CS, Torsvik V, Sorensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biol Fert Soils 33(6):443–453. doi:10.1007/s003740100351

    CAS  Google Scholar 

  • Johnson WW, Finley MT (1980) Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965–78 United States Fish and Wildlife Service Resource Publication

  • Kadian N, Malik A, Satya S, Dureja P (2012) Effect of organic amendments on microbial activity in chlorpyrifos contaminated soil. J Environ Manage 95:S199–S202. doi:10.1016/j.jenvman.2010.10.023

    CAS  Google Scholar 

  • Kanmoni VGG, Daniel S, Raj GAG (2012) Photocatalytic degradation of chlorpyrifos in aqueous suspensions using nanocrystals of ZnO and TiO2. React Kinet Mech 106(2):325–339. doi:10.1007/s11144-012-0433-5

    CAS  Google Scholar 

  • Karim AA, Haridi AA, El Rayah EA (1985) The environmental impacts of four insecticides on non-target organisms in the Gezira Irrigation Scheme canals of Sudan. J Trop Med Hyg 88(2):161–168

    CAS  Google Scholar 

  • Karunanayake CP, Spinelli JJ, McLaughlin JR, Dosman JA, Pahwa P, McDuffie HH (2012) Hodgkin lymphoma and pesticides exposure in men: a Canadian case–control study. J Agromed 17(1):30–39. doi:10.1080/1059924X.2012.632726

    Google Scholar 

  • Kashyap V, Kumar M (2013) Studies on the effects of chlorpyrifos on growth and yield in green gram (Vigna radiata L.) at different phenological stages. J Biol Chem Res 30(2):734–740

    Google Scholar 

  • Kavitha P, Rao JV (2008) Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish. Gambusia affinis. Environ Toxicol Pharmacol 26(2):192–198. doi:10.1016/j.etap.2008.03.010

    CAS  Google Scholar 

  • Kegley SE, Hill, BR, Orme S, Choi AH (2014) PAN Pesticide Database, Pesticide Action Network, North America (Oakland, CA). http://wwwpesticideinfoorg/List_AquireAlljsp?Rec_Id=PC33392&Taxa_Group=AquaticPlants

  • Key PB, Fulton MH (1993) Lethal and sublethal effects of chlorpyrifos exposure on adult and larval stages of the grass shrimp, Palaemonetes pugio. J Environ Sci Health Part B 28(5):621–640. doi:10.1080/03601239309372844

    Google Scholar 

  • Korade DL, Fulekar MH (2009) Effect of organic contaminants on seed germination of Lolium multiflorum in soil. Biol Med 1(1):28–34

    CAS  Google Scholar 

  • Kralj MB, Franko M, TrebÅ¡e P (2007) Photodegradation of organophosphorus insecticides investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay. Chemosphere 67(1):99–107. doi:10.1016/j.chemosphere.2006.09.039

    Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47(2):219–225. doi:10.1007/s00374-010-0505-5

    CAS  Google Scholar 

  • Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeter Biodegr 62(2):204–209. doi:10.1016/j.ibiod.2007.12.005

    CAS  Google Scholar 

  • Lakshmi CV, Kumar M, Khanna S (2009) Biodegradation of chlorpyrifos in soil by enriched cultures. Curr Microbiol 58(1):35–38. doi:10.1007/s00284-008-9262-1

    Google Scholar 

  • Lal S, Lal R (1987) Bioaccumulation, metabolism, and effects of DDT, fenitrothion, and chlorpyrifos on Saccharomyces cerevisiae. Arch Environ Contam Toxicol 16(6):753–757

    CAS  Google Scholar 

  • Latifi AM, Khodi S, Mirzaei M, Miresmaeili M, Babavalian H (2012) Isolation and characterization of five chlorpyrifos degrading bacteria. Afr J Biotechnol 11(13):3140–3146. doi:10.5897/AJB11.2814

    CAS  Google Scholar 

  • Lee WJ et al (2004) Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J Natl Cancer Inst 96(23):1781–1789

    CAS  Google Scholar 

  • Lee WJ, Sandler DP, Blair A, Samanic C, Cross AJ, Alavanja MCR (2007) Pesticide use and colorectal cancer risk in the Agricultural Health Study. J Natl Cancer Inst 121(2):339–346

    CAS  Google Scholar 

  • Levin ED, Addy N, Nakajima A, Christopher NC, Seidler FJ, Slotkin TA (2001) Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Dev Brain Res 130(1):83–89

    CAS  Google Scholar 

  • Levin ED, Chrysanthis E, Yacisin K, Linney E (2003) Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol Teratol 25(1):51–57

    CAS  Google Scholar 

  • Levin ED, Swain HA, Donerly S, Linney E (2004) Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol 26(6):719–723

    CAS  Google Scholar 

  • Lewis VE, Donarski WJ, Wild JR, Raushel FM (1988) Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase. Biochemistry 27(5):1591–1597. doi:10.1021/bi00405a030

    CAS  Google Scholar 

  • Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158(2):143–149. doi:10.1016/j.resmic.2006.11.007

    CAS  Google Scholar 

  • Li X, Jiang J, Gu L, Ali SW, He J, Li S (2008) Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples. Int Biodeter Biodegr 62(4):331–335. doi:10.1016/j.ibiod.2008.03.001

    CAS  Google Scholar 

  • Liu X, You M, Wei Y, Liao J, Ye L, Chen J (2002) Isolation of chlorpyrifos-degrading Aspergillus sp. Y and measurement of degradation efficiency. Chin J Appl Environ Biol 9(1):78–80

    Google Scholar 

  • Liu Y-H, Liu Y, Chen Z-S, Lian J, Huang X, Chung Y-C (2004) Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillium lilacinum BP303. Enzyme Microb Tech 34(3):297–303. doi:10.1016/j.enzmictec.2003.11.009

    CAS  Google Scholar 

  • Liu H, Zhang J-J, Wang S-J, Zhang X-E, Zhou N-Y (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334(4):1107–1114. doi:10.1016/j.bbrc.2005.07.006

    CAS  Google Scholar 

  • Liu ZY, Chen X, Shi Y, Su ZC (2012) Bacterial degradation of chlorpyrifos by Bacillus cereus. Adv Mater Res 356:676–680. doi:10.4028/www.scientific.net/AMR.356-360.676

    Google Scholar 

  • Lu JL (2011) Farmers’ exposure to pesticides and pesticide residues in soils and crops grown in Benguet Philippines. Philipp J Crop Sci 36(3):19–27

    Google Scholar 

  • Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342. doi:10.1016/j.biortech.2012.09.116

    CAS  Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (1990) Handbook of chemical property estimation methods: environmental behavior of organic compounds. American Chemical Society, Washington, DC

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Hari K, Saravanan VS, Sa T (2006) Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pest Biochem Physiol 84(2):143–154. doi:10.1016/j.pestbp.2005.06.004

    CAS  Google Scholar 

  • Madhuri RJ, Rangaswamy V (2002) Influence of selected insecticides on phosphatase activity in groundnut (Arachis hypogeae L.) soils. J Environ Biol India 23(4):393–397

    CAS  Google Scholar 

  • Mallick K, Bharati K, Banerji A, Shakil NA, Sethunathan N (1999) Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bull Environ Contam Toxicol 62(1):48–54

    CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47(1):127–158. doi:10.1146/annurev.arplant.47.1.127

    CAS  Google Scholar 

  • Martinez-Toledo MV, Salmeron V, Gonzalez-Lopez J (1992) Effect of the insecticides methylpyrimifos and chlorpyrifos on soil microflora in an agricultural loam. Plant Soil 147(1):25–30

    CAS  Google Scholar 

  • Maya K, Singh RS, Upadhyay SN, Dubey SK (2011) Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochem 46(11):2130–2136. doi:10.1016/j.procbio.2011.08.012

    CAS  Google Scholar 

  • Maya K, Upadhyay SN, Singh RS, Dubey SK (2012) Degradation kinetics of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) by fungal communities. Bioresour Technol 126:216–223. doi:10.1016/j.biortech.2012.09.003

    CAS  Google Scholar 

  • Meeker JD, Ravi SR, Barr DB, Hauser R (2008) Circulating estradiol in men is inversely related to urinary metabolites of nonpersistent insecticides. Reprod Toxicol 25(2):184–191. doi:10.1016/j.reprotox.2007.12.005

    CAS  Google Scholar 

  • Menon P, Gopal M, Prasad R (2004) Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonification and mineralizable nitrogen in two tropical soil types. J Agric Food Chem l 52(24):7370–7376

    CAS  Google Scholar 

  • Menon P, Gopal M, Parsad R (2005) Effects of chlorpyrifos and quinalphos on dehydrogenase activities and reduction of Fe3+ in the soils of two semi-arid fields of tropical India. Agric Ecosyst Environt 108(1):73–83. doi:10.1016/j.agee.2004.12.008

    CAS  Google Scholar 

  • Miguel N, Ormad MP, Mosteo R, Ovelleiro JL (2012) Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide. Int J Photoenergy

  • Mills K, Kegley SE (2006) Air monitoring for chlorpyrifos in Lindsay, California, June–July 2004 and July–August 2005 Pesticide Action Network, San Francisco

  • Moorman TB (1989) A review of pesticide effects on microorganisms and microbial processes related to soil fertility. J Prod Agric 2(1):14–23. doi:10.2134/jpa1989.0014

    Google Scholar 

  • Mugni HN, Demetrio P, Paracampo A, Pardi M, Bulus G, Bonetto C (2012) Toxicity persistence in runoff water and soil in experimental soybean plots following chlorpyrifos application. Bull Environ Contam Toxicol 89(1):208–212. doi:10.1007/s00128-012-0643-6

    CAS  Google Scholar 

  • Muhamad SG (2010) Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters. Arabian J Chem 3(2):127–133. doi:10.1016/j.arabjc.2010.02.009

    CAS  Google Scholar 

  • Mukherjee I, Gopal M (1996) Degradation of chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicol Environ Chem 57(1–4):145–151. doi:10.1080/02772249609358383

    CAS  Google Scholar 

  • Mukherjee I, Gopal M, Dhar DW (2004) Disappearance of chlorpyrifos from cultures of Chlorella vulgaris. Bull Environ Contam Toxicol 73(2):358–363. doi:10.1007/s00128-004-0436-7

    CAS  Google Scholar 

  • Mulbry W (2000) Characterization of a novel organophosphorus hydrolase from Nocardiodes simplex NRRL B-24074. Microbiol Res 154(4):285–288. doi:10.1016/S0944-5013(00)80001-4

    CAS  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

  • Munoz-Quezada MT et al (2012) Predictors of exposure to organophosphate pesticides in schoolchildren in the Province of Talca Chile. Environ Int 47:28–36. doi:10.1016/j.envint.2012.06.002

    CAS  Google Scholar 

  • Murphy MW et al (2012) Type and toxicity of pesticides sold for community vector control use in the Gambia. Epidemiol Res Int. doi:10.1155/2012/387603

    Google Scholar 

  • NFMS (2008) National Marine Fisheries Service Endangered Species Act Section 7. Consultation, Biological Opinion, Environmental Protection Agency, Registration of Pesticides Containing Chlorpyrifos, Diazinon, and Malathion. http://wwwnmfsnoaagov/pr/pdfs/pesticide_bioppdf

  • NRA (2000) The NRA review of chlorpyrifos volume 1. National Registration Authority for Agricultural and Veterinary Medicines, Canberra. http://wwwapvmagovau/products/review/docs/chlorpyrifos_summarypdf

  • Ohashi N, Tsuchiya Y, Sasano H, Hamada A (1993) Screening on reactivity of organic pesticides with ozone in water and their products. Jpn J Toxicol Environ Health 39(6):522–533. doi:10.1248/jhs1956.39.6_522

    CAS  Google Scholar 

  • Ojha A, Yaduvanshi SK, Pant SC, Lomash V, Srivastava N (2013) Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environ Toxicol 28(10):543–552. doi:10.1002/tox.20748

    CAS  Google Scholar 

  • Olofinboba MO, Kozlowski TT (1982) Effects of three systemic insecticides on seed germination and growth of Pinus halepensis seedlings. Plant Soil 64(2):255–258

    CAS  Google Scholar 

  • Omar SA (1998) Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation 9(5):327–336

    CAS  Google Scholar 

  • Oppenlander T (2003) Photochemical purification of water and air: advanced oxidation processes (AOPs)—principles, reaction mechanisms, reactor concepts. Wiley, New York

    Google Scholar 

  • Ormad MP, Miguel N, Lanao M, Mosteo R, Ovelleiro JL (2010) Effect of application of ozone and ozone combined with hydrogen peroxide and titanium dioxide in the removal of pesticides from water. Ozone Sci Eng 32(1):25–32

    CAS  Google Scholar 

  • Oruc EO (2010) Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pest Biochem Physiol 96(3):160–166. doi:10.1016/j.pestbp.2009.11.005

    CAS  Google Scholar 

  • Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pest Biochem Physiol 94(2):68–72. doi:10.1016/j.pestbp.2009.03.003

    CAS  Google Scholar 

  • Palma P, Palma VL, Fernandes RM, Soares A, Barbosa IR (2008) Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal. Bull Environ Contam Toxicol 81(5):485–489. doi:10.1007/s00128-008-9517-3

    CAS  Google Scholar 

  • Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55(2):197–205

    CAS  Google Scholar 

  • Pankhurst C (2006) Effects of pesticides used in sugarcane cropping systems on soil organisms and biological functions associated with soil health. Sugar Yield Decline Joint Venture, Adelaide

    Google Scholar 

  • Panuwet P, Prapamontol T, Chantara S, Barr DB (2009) Urinary pesticide metabolites in school students from northern Thailand. Int J Hyg Environ Health 212(3):288–297. doi:10.1016/j.ijheh.2008.07.002

    CAS  Google Scholar 

  • Park BS (2010) Biotransformation of aldrin and chlorpyrifos-methyl by Anabaena sp. PCC 7120. Korean J Environ Agric 29(2):184–188

    CAS  Google Scholar 

  • Parween T, Jan S, Fatma T (2011) Evaluation of oxidative stress in Vigna radiata L. In response to chlorpyrifos. Int J Environ Sci Tech 9(4):605–612. doi:10.1007/s11738-011-0772-2

    Google Scholar 

  • Pelizzetti E, Minero C, Piccinini P, Vincenti M (1993) Phototransformations of nitrogen containing organic compounds over irradiated semiconductor metal oxides: nitrobenzene and atrazine over TiO2 and ZnO. Coord Chem Rev 125(1):183–193

    CAS  Google Scholar 

  • Pengphol S, Uthaibutra J, O-a Arquero, Nomura N, Whangchai K (2012) Oxidative degradation and detoxification of chlorpyrifos by ultrasonic and ozone treatments. J Agric Sci 4(8):164. doi:10.5539/jas.v4n8p164

    Google Scholar 

  • Penuela GA, Barcelo D (1997) Comparative degradation kinetics of chlorpyrifos in water by photocatalysis with FeCl3, TiO2 and photolysis using solid-phase disk extraction followed by gas chromatographic techniques. Toxicol Environ Chem 62(1–4):135–147

    Google Scholar 

  • Phipps GL, Holcombe GW (1985) A method for aquatic multiple species toxicant testing: acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. Environ Pollut A 38(2):141–157. doi:10.1016/0143-1471(85)90073-X

    CAS  Google Scholar 

  • Phung DT, Connell D, Miller G, Chu C (2012) Probabilistic assessment of chlorpyrifos exposure to rice farmers in Viet Nam. J Expo Sci Environ Epidemiol 22(4):417–423. doi:10.1038/jes.2012.32

    CAS  Google Scholar 

  • Porichha SK, Sarangi PK, Prasad R (1998) Genotoxic effect of chlorpyrifos in Channa punctatu. Pres Cytol Genet 9:631–638

    Google Scholar 

  • Pozo C, Martinez-Toledo MV, Salmeron V, Rodelas B, Gonzalez-Lopez J (1995) Effect of chlorpyrifos on soil microbial activity. Environ Toxicol Chem 14(2):187–192. doi:10.1002/etc.5620140201

    CAS  Google Scholar 

  • Prakash A, Khan S, Aggarwal M, Telang AG, Malik JK (2009) Chlorpyrifos induces apoptosis in murine thymocytes. Toxicol Lett 189:S83

    Google Scholar 

  • Prasertsup P, Ariyakanon N (2011) Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Int J Phytoremediation 13(4):383–395. doi:10.1080/15226514.2010.495145

    Google Scholar 

  • Quiroz MA, Martinez-Huitle CA, Bandala ER (2011) Advanced oxidation processes (AOPs) for removal of pesticides from aqueous media. INTECH Open Access Publisher. doi:10.5772/13597

  • Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environl ContamToxicol 131:1–150

    CAS  Google Scholar 

  • Racke KD, Laskowski DA, Schultz MR (1990) Resistance of chlorpyrifos to enhanced biodegradation in soil. J Agric Food Chem l 38(6):1430–1436

    CAS  Google Scholar 

  • Rahman MF, Mahboob M, Danadevi K, Banu BS, Grover P (2002) Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutat Res 516(1):139–147

    CAS  Google Scholar 

  • Rani MS et al (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:026–031

    Google Scholar 

  • Rao JV, Rani CHS, Kavitha P, Rao RN, Madhavendra SS (2003) Toxicity of chlorpyrifos to the fish Oreochromis mossambicus. Bull Environ Contam Toxicol 70(5):0985–0992. doi:10.1007/s00128-003-0079-0

    CAS  Google Scholar 

  • Rauh VA et al (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118(6):e1845–e1859

    Google Scholar 

  • Reiss R, Neal B, Lamb JC, Juberg DR (2012) Acetylcholinesterase inhibition dose-response modeling for chlorpyrifos and chlorpyrifos-oxon. Regul Toxicol Pharm 63(1):124–131. doi:10.1016/j.yrtph.2012.03.008

    CAS  Google Scholar 

  • Richendrfer H, Pelkowski SD, Colwill RM, Creton R (2012) Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae. Neurotoxicol Teratol 34(4):458–465. doi:10.1016/j.ntt.2012.04.010

    CAS  Google Scholar 

  • Rokade KB, Mali GV (2013) Biodegradation of chlorpyrifos by Pseudomonas desmolyticum NCIM 2112. Int J Pharm Bio Sci 4(2):609–616

    CAS  Google Scholar 

  • Romeh AA, Hendawi MY (2013) Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environ Chem Lett 11(2):163–170. doi:10.1007/s10311-012-0392-0

    CAS  Google Scholar 

  • Rowsey PJ, Gordon CJ (1999) Tumor necrosis factor is involved in chlorpyrifos-induced changes in core temperature in the female rat. Toxicol Lett 109(1):51–59

    CAS  Google Scholar 

  • Sabdono A (2013) Biodegradation of chlorpyrifos by a marine bacterium Bacillus firmus strain by6 associated with branching coral Acropora sp. J Coastal Dev 10(2):115–123

    Google Scholar 

  • Salama AK, Osman KA (2013) Remediation of pesticide-polluted water using ozonation as a safe method. Glob J Hum Soc Sci Res 13(2)

  • Samet Y, Hmani E, Abdelhedi R (2012) Fenton and solar photo-Fenton processes for the removal of chlorpyrifos insecticide in wastewater. Water Sa 38(4):537–542

    CAS  Google Scholar 

  • Sandal S, Yilmaz B (2011) Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2, 4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ Toxicol 26(5):433–442. doi:10.1002/tox.20569

    CAS  Google Scholar 

  • Sardar D, Kole RK (2005) Metabolism of chlorpyrifos in relation to its effect on the availability of some plant nutrients in soil. Chemosphere 61(9):1273–1280

    CAS  Google Scholar 

  • Sarnaik SS, Kanekar PP, Raut VM, Taware SP, Chavan KS, Bhadbhade BJ (2006) Effect of application of different pesticides to soybean on the soil microflora. J Environ Biol 37(2):423–426

    Google Scholar 

  • Sasikala C, Jiwal S, Rout P, Ramya M (2012) Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil. World J Microbiol Biotechnol 28(3):1301–1308. doi:10.1007/s11274-011-0879-z

    CAS  Google Scholar 

  • Schimmel SC, Garnas RL, Patrick JM Jr, Moore JC (1983) Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J Agric Food Chem 31(1):104–113. doi:10.1021/jf00115a027

    CAS  Google Scholar 

  • Schuh RA, Lein PJ, Beckles RA, Jett DA (2002) Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharm 182(2):176–185

    CAS  Google Scholar 

  • Schulman I (2013) Photocatalytic oxidation for the removal of chlorpyrifos from aqueous solution. University of Nova Gorica. http://www.wpi.edu/Pubs/E-project/Available/Eproject-011314-135820/unrestricted/PhotocatalyticOxidationfortheRemovalofChlorpyrifosfromAqueousSolution2.pdf

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44(1):246–249

    CAS  Google Scholar 

  • Shan M, Fang H, Wang X, Feng B, Chu X-Q, Yu Y-L (2006) Effect of chlorpyrifos on soil microbial populations and enzyme activities. J Environ Sci (China) 18(1):4–5

    CAS  Google Scholar 

  • Sharbidre AA, Metkari V, Patode P (2011) Effect of methyl parathion and chlorpyrifos on certain biomarkers in various tissues of guppy fish, Poecilia reticulata. Pest Biochem Physiol 101(2):132–141. doi:10.1016/j.pestbp.2011.09.002

    CAS  Google Scholar 

  • Sharma SK (2015) Green Chemistry for dyes removal from waste water: research trends and applications. Wiley, New York

    Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980a) Behaviour of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Res 14(8):1095–1100

    CAS  Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980b) Persistence of 12 insecticides in water. Water Res 14(8):1089–1093

    CAS  Google Scholar 

  • Silambarasan S, Abraham J (2013) Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil. J Basic Microbiol 54(1):44–55. doi:10.1002/jobm.201200437

    Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471. doi:10.1111/j.1574-6976.2006.00018.x

    CAS  Google Scholar 

  • Singh BK, Walker A, Wright DJ (2002) Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. Bull Environ Contam Toxicol 69(2):181–188

    Google Scholar 

  • Singh BK, Walker A, Grayston SJ, Del Re AAM, Capri E, Padovani L, Trevisan M (2003a) Degradation of chlorpyrifos and its effects on the soil biota. In: Pesticide in air, plant, soil and water system. Proceedings of the XII symposium pesticide chemistry, Piacenza, Italy, La Goliardica Pavese srl, pp 27–34

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2003b) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69(9):5198–5206

    CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70(8):4855–4863. doi:10.1128/AEM.70.8.4855-4863.2004

    CAS  Google Scholar 

  • Singh PB, Sharma S, Saini HS, Chadha BS (2009) Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett Appl Microbiol 49(3):378–383. doi:10.1111/j.1472-765X.2009.02672.x

    CAS  Google Scholar 

  • Singh DP, Khattar JIS, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environl Sci Pol Res 18(8):1351–1359. doi:10.1007/s11356-011-0472-x

    CAS  Google Scholar 

  • Sivasithamparam K (1970) Some effects of an insecticide (“Dursban”) and a weedicide (“Linuron”) on the microflora of a submerged soil. Riso 19:339–346

    Google Scholar 

  • Sledge D et al (2011) Critical duration of exposure for developmental chlorpyrifos-induced neurobehavioral toxicity. Neurotoxicol Teratol 33(6):742–751. doi:10.1016/j.ntt.2011.06.005

    CAS  Google Scholar 

  • Slotkin TA (2004) Guidelines for developmental neurotoxicity and their impact on organophosphate pesticides: a personal view from an academic perspective. Neurotoxicology 25(4):631–640

    CAS  Google Scholar 

  • Slotkin TA, Brown KK, Seidler FJ (2005) Developmental exposure of rats to chlorpyrifos elicits sex-selective hyperlipidemia and hyperinsulinemia in adulthood. Environ Health Persp 113(10):1291–1294

    CAS  Google Scholar 

  • Smegal DC (2000) Human health risk assessment chlorpyrifos US Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, Health Effects Division, US Government Printing Office: Washington, DC, pp 1–131

  • Smith CR, Funke BR, Schulz JT (1978) Effects of insecticides on acetylene reduction by alfalfa, red clover and sweetclover. Soil Biol Biochem 10(6):463–466. doi:10.1016/0038-0717(78)90037-8

    CAS  Google Scholar 

  • Sobti RC, Krishan A, Pfaffenberger CD (1982) Cytokinetic and cytogenetic effects of some agricultural chemicals on human lymphoid cells in vitro: organophosphates. Mutat 102(1):89–102

    CAS  Google Scholar 

  • Sparling DW, Fellers G (2007) Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environ Pollt 147(3):535–539. doi:10.1016/j.envpol.2006.10.036

    CAS  Google Scholar 

  • Srebocan E, Hrlec G, Grabarevic Z, Pompe-Gotal J (2003) Poisoning with acetylcholinesterase inhibitors in dogs: two case reports. Vet Med-Czech 48(6):175–176

    Google Scholar 

  • Tang T, Dong J, Ai S, Qiu Y, Han R (2011) Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin. J Hazard Mater 188(1):92–97. doi:10.1016/j.jhazmat.2011.01.080

    CAS  Google Scholar 

  • Thengodkar RRM, Sivakami S (2010) Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21(4):637–644. doi:10.1007/s10532-010-9331-6

    CAS  Google Scholar 

  • Theriot CM, Grunden AM (2011) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89(1):35–43. doi:10.1007/s00253-010-2807-9

    CAS  Google Scholar 

  • Thrasher JD, Heuser G, Broughton A (2002) Immunological abnormalities in humans chronically exposed to chlorpyrifos. Arch Environ Health 57(3):181–187. doi:10.1080/00039890209602934

    CAS  Google Scholar 

  • Tian Y, Ishikawa H, Yamaguchi T, Yamauchi T, Yokoyama K (2005) Teratogenicity and developmental toxicity of chlorpyrifos: maternal exposure during organogenesis in mice. Reprod Toxicol 20(2):267–270

    CAS  Google Scholar 

  • Tomlin CDS (2009) The pesticide manual: a world compendium. British Crop Production Council, Alton

    Google Scholar 

  • Tortella GR, Rubilar O, Cea M, Wulff C, Martinez O, Diez MC (2010) Biostimulation of agricultural biobeds with NPK fertilizer on chlorpyrifos degradation to avoid soil and water contamination. J Soil Sci Plant Nutr 10(4):464–475. doi:10.4067/S0718-95162010000200007

    Google Scholar 

  • Tu CM (1981) Effects of pesticides on activities of enzymes and microorganisms in a clay soil. J Environ Sci Health, Part B 16(2):179–191. doi:10.1080/03601238109372250

    CAS  Google Scholar 

  • USEPA (2009) Memorandom, chlorpyrifos. Revised Human Health Assessment Scoping Document in support of registration review from Drew D, Britton W, Doherty J, Risk Assessment Branch V. Health Effects Division to Santora K, Myers M, Regregistration Branch 2, Special Review and Reregistration Division (7508P) Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC

  • Usmani KA, Rose RL, Hodgson E (2003) Inhibition and activation of the human liver microsomal and human cytochrome P450 3A4 metabolism of testosterone by deployment-related chemicals. Drug Metab Dispos 31(4):384–391. doi:10.1124/dmd.31.4.384

    CAS  Google Scholar 

  • Ventura C et al (2012) Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or-independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol Lett 213(2):184–193

    CAS  Google Scholar 

  • Verma A, Dixit D (2012) Photocatalytic degradability of insecticide chlorpyrifos over UV irradiated titanium dioxide in aqueous phase. Int J Environ Sci 3(2):743–755. doi:10.6088/ijes.2012030132001

    CAS  Google Scholar 

  • Vischetti C, Coppola L, Monaci E, Cardinali A, Castillo MdP (2007) Microbial impact of the pesticide chlorpyrifos on Swedish and Italian biobeds. Agron Sustain Dev 27(3):267–272. doi:10.1051/agro:2007020

    CAS  Google Scholar 

  • Viswanath G, Chatterjee S, Dabral S, Nanguneri SR, Divya G, Roy P (2010) Anti-androgenic endocrine disrupting activities of chlorpyrifos and piperophos. J Steroid Biochem Mol 120(1):22–29. doi:10.1016/j.jsbmb.2010.02.032

    CAS  Google Scholar 

  • Wacksman MN, Maul JD, Lydy MJ (2006) Impact of atrazine on chlorpyrifos toxicity in four aquatic vertebrates. Arch Environ Contam Toxicol 51(4):681–689. doi:10.1007/s00244-005-0264-8

    CAS  Google Scholar 

  • Walia S, Dureja P, Mukerjee SK (1988) New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces. Arch Environ Contam Toxicol 17(2):183–188

    CAS  Google Scholar 

  • Wang AA, Mulchandani A, Chen W (2002) Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl Environ Microbiol 68(4):1684–1689. doi:10.1128/AEM.68.4.1684-1689.2002

    CAS  Google Scholar 

  • Wang JH, Zhu LS, Wang J, Qin K (2005) Degradation characteristics of three fungi to chlorpyrifos. Chin J Appl Environ Biol 11(2):211–214

    Google Scholar 

  • Wang L, Jiao W, Jiang X, Liang Y (2013a) Abiotic control on the dissipation of chlorpyrifos spiked in an udic ferrisol at a lower dosage. Chem Ecol 29(8):724–732. doi:10.1080/02757540.2013.817565

    CAS  Google Scholar 

  • Wang Q, Yang J, Li C, Xiao B, Que X (2013b) Influence of initial pesticide concentrations in water on chlorpyrifos toxicity and removal by Iris pseudacorus. Water Sci Technol 67(9):1908–1915. doi:10.2166/wst.2013.071

    CAS  Google Scholar 

  • Watts M (2012) Chlorpyrifos as a possible global POP Pesticide Action Network North America, Oakland, CA. www pan-europe info/News/PR/121009_Chlorpyrifos_as_POP_final pdf

  • WISER Wireless Information System for Emergency Response, Chlorpyrifos (alias of Danusban) CAS RN:2921-88-2, U.S. National Library of Medicine. http://webwisernlmnihgov/getSubstanceDatado?substanceId=280&displaySubstanceName=Danusban&STCCID=&UNNAID=&selectedDataMenuItemID=79

  • Worthing CR (1979) The pesticide manual: a world compendium. British Crop Protection Council, Croydon

    Google Scholar 

  • Wu N, Deng M, Shi X, Liang G, Yao B, Fan Y (2004) Isolation, purification and characterization of a new organphosphorus hydrolase OPHC2. Chin Sci Bull 49(3):268–272. doi:10.1360/03wc0453

    CAS  Google Scholar 

  • Xing H, Wang X, Sun G, Gao X, Xu S, Wang X (2012) Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinus carpio L.). Environ Toxicol Pharmacol 33(2):233–244. doi:10.1016/j.etap.2011.12.014

    CAS  Google Scholar 

  • Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y (2007) Mineralization of chlorpyrifos by coculture of Serratia and Trichosporon spp. Biotechnol Lett 29(10):1469–1473. doi:10.1007/s10529-007-9444-0

    CAS  Google Scholar 

  • Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeter Biodegr 62(1):51–56. doi:10.1016/j.ibiod.2007.12.001

    CAS  Google Scholar 

  • Yadav M, Srivastva N, Singh RS, Upadhyay SN, Dubey SK (2014) Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor. Bioresour Technol 165:265–269. doi:10.1016/j.biortech.2014.01.098

    CAS  Google Scholar 

  • Yang L, Zhao Y-h, Zhang B-x, Yang C-H, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251(1):67–73. doi:10.1016/j.femsle.2005.07.031

    CAS  Google Scholar 

  • Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265(1):118–125. doi:10.1111/j.1574-6968.2006.00478.x

    CAS  Google Scholar 

  • Yu J-J (2002) Removal of organophosphate pesticides from wastewater by supercritical carbon dioxide extraction. Water Res 36(4):1095–1101. doi:10.1016/S0043-1354(01)00293-7

    CAS  Google Scholar 

  • Yu YL, Fang H, Wang X, Wu XM, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17(5):487–494. doi:10.1007/s10532-005-9020-z

    CAS  Google Scholar 

  • Zeinat Kamal M, Nashwa AH, Mohamed AI, Sherif E-N (2008) Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Aus J Basic Appl Sci 2(3):724–732

    Google Scholar 

  • Zhang R, Cui Z, Zhang X, Jiang J, Gu J-D, Li S (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17(5):465–472. doi:10.1007/s10532-005-9018-6

    CAS  Google Scholar 

  • Zhang Q, Liao C, Yan Y, Lin S, Yang H, Tan H (2013) Toxicity of chlorpyrifos on seed germination of different vegetables. Guizhou Sci 6:46–49

    Google Scholar 

  • Zhao L, Wang F, Zhao J (2014) Identification and functional characteristics of chlorpyrifosdegrading and plant growth promoting bacterium Acinetobacter calcoaceticus. J Basic Microbiol 54(5):457–463. doi:10.1002/jobm.201200639

    CAS  Google Scholar 

  • Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67(10):4922–4925. doi:10.1128/AEM.67.10.4922-4925.2001

    CAS  Google Scholar 

  • Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4(24):2716–2719

    Google Scholar 

  • Zhu B, Cao Y, Wang D, Tang X, Hua R, Shi T, Sun L (2013) Survival and chlorpyrifos degradation of strain Cupriavidus taiwanensis Lux-X1 in different type soils. J Food Agric Environ 11(2):873–876

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support received from Department of Science and Technology (DST/INSPIRE fellowship/2011/IF120107) Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisha Manakulam Shaike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, E.M., Shaike, J.M. Chlorpyrifos: pollution and remediation. Environ Chem Lett 13, 269–291 (2015). https://doi.org/10.1007/s10311-015-0513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0513-7

Keywords

Navigation