Skip to main content
Log in

Selenite as a Lipid Inductor in Marine Microalga Dunaliella tertiolecta: Comparison of One-Stage and Two-Stage Cultivation Strategies

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae have emerged as one of the most promising alternative sources of biofuels due to their high lipid accumulation ability. High lipid content is of pivotal importance for biodiesel production. In order to obtain high lipid content, modifications of culture conditions and development of an efficient lipid induction method are called for. In the present study, the possibility of using selenium in a form of sodium selenite as a lipid inductor in marine microalga Dunaliella tertiolecta was investigated during one- and two-stage cultivation modes. The effects of selenite on algal growth, pigment content, oxidative stress, and neutral lipid content were determined during both cultivation modes. The results revealed that the two-stage cultivation on 10.00–40.00 mg L−1 of selenite resulted in up to twofold higher algal cell density compared to the one-stage cultivation. Selenite concentrations from 2.50 to 20.00 mg L−1 increased lipid peroxidation during both cultivation modes, emphasizing the selenite-induced oxidative stress accompanied by the increased lipid accumulation in microalgae cells. During one- and two-stage cultivation on 20.00 mg L−1 of selenite, lipid content increased 2.39- and 5.73-fold at days 9 and 14 of cultivation, respectively. Moreover, the highest obtained neutral lipid content during the two-stage cultivation was 5.40-fold higher than lipid content obtained during the one-stage cultivation. Collectively, these results suggest that the two-stage cultivation strategy, initiated with optimal culture conditions for biomass production and followed by the addition of selenite as a stress inductor, can be successfully deployed to enhance the lipid content in D. tertiolecta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data underlying this article are available in the article. Raw data files will be shared on reasonable request to the corresponding author.

References

  1. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal. https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  Google Scholar 

  2. Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International. https://doi.org/10.1155/2016/8792548

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xia, L., Ge, H., Zhou, X., Zhang, D., & Hu, C. (2013). Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15. Bioresource Technology. https://doi.org/10.1016/j.biortech.2013.06.112

    Article  PubMed  Google Scholar 

  4. Doan, Y. T. T., & Obbard, J. P. (2015). Two-stage cultivation of a Nannochloropsis mutant for biodiesel feedstock. Journal of Applied Phycology. https://doi.org/10.1007/s10811-014-0490-4

    Article  Google Scholar 

  5. Su, C. H., Chien, L. J., Gomes, J., Lin, Y. S., Yu, Y. K., Liou, J. S., & Syu, R. J. (2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology. https://doi.org/10.1007/s10811-010-9609-4

    Article  Google Scholar 

  6. Yang, J. S., Cao, J., Xing, G. L., & Yuan, H. L. (2015). Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource Technology. https://doi.org/10.1016/j.biortech.2014.10.124

    Article  PubMed  Google Scholar 

  7. Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155. https://doi.org/10.1016/j.biortech.2013.12.109

  8. Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., & Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology. https://doi.org/10.1016/j.biortech.2015.04.017

  9. Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113. https://doi.org/10.1016/j.biortech.2011.11.133

  10. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2009.03.006

    Article  Google Scholar 

  11. Ota, M., Kato, Y., Watanabe, M., Sato, Y., Smith, R. L., Rosello-Sastre, R., … Inomata, H. (2011). Effects of nitrate and oxygen on photoautotrophic lipid production from Chlorococcum littorale. Bioresource Technology. https://doi.org/10.1016/j.biortech.2010.10.024

  12. Kaewkannetra, P., Enmak, P., & Chiu, T. (2012). The effect of CO2 and salinity on the cultivation of scenedesmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering. https://doi.org/10.1007/s12257-011-0533-5

    Article  Google Scholar 

  13. Ren, H. Y., Liu, B. F., Ma, C., Zhao, L., & Ren, N. Q. (2013). A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels. https://doi.org/10.1186/1754-6834-6-143

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pandit, P. R., Fulekar, M. H., & Karuna, M. S. L. (2017). Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-8875-y

    Article  PubMed  Google Scholar 

  15. Zhong, Y., & Cheng, J. J. (2017). Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of selenium, enhancement of photosynthetic pigments, and amino acid production. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.7b04246

    Article  PubMed  Google Scholar 

  16. Araie, H., & Shiraiwa, Y. (2009). Selenium utilization strategy by microalgae. Molecules. https://doi.org/10.3390/molecules14124880

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang, H., Abunasser, N., Garcia, M. E. D., Chen, M., Simon Ng, K. Y., & Salley, S. O. (2011). Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy. https://doi.org/10.1016/j.apenergy.2010.09.013

    Article  Google Scholar 

  18. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2009.07.020

    Article  Google Scholar 

  19. Song, D., Xi, B., & Sun, J. (2016). Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios. Journal of Ocean University of China, 15(1), 124–130. https://doi.org/10.1007/s11802-016-2797-z

    Article  CAS  Google Scholar 

  20. Ashour, M., Elshobary, M. E., El-Shenody, R., Kamil, A. W., & Abomohra, A. E. F. (2019). Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2018.12.009

    Article  Google Scholar 

  21. OECD. (2011). OECD Guidelines for the testing of chemicals. Freshwater alga and cyanobacteria, growth inhibition test. Organisation for Economic Cooperation and Development. https://doi.org/10.1787/9789264203785-en

    Article  Google Scholar 

  22. Hagerthey, S. E., William Louda, J., & Mongkronsri, P. (2006). Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. Journal of Phycology. https://doi.org/10.1111/j.1529-8817.2006.00257.x

    Article  Google Scholar 

  23. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  24. El Arroussi, H., Benhima, R., Bennis, I., El Mernissi, N., & Wahby, I. (2015). Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renewable Energy. https://doi.org/10.1016/j.renene.2014.12.010

    Article  Google Scholar 

  25. Priscu, J. C., Priscu, L. R., Palmisano, A. C., & Sullivan, C. W. (1986). Estimation of neutral lipid levels in antarctic sea ice microalgae by nile red fluorescence. Antarctic Science. https://doi.org/10.1017/S0954102090000190

    Article  Google Scholar 

  26. Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B., & Cetiner, S. (2014). Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE. https://doi.org/10.1371/journal.pone.0091957

    Article  PubMed  PubMed Central  Google Scholar 

  27. Babaei, A., Ranglová, K., Malapascua, J. R., & Masojídek, J. (2017). The synergistic effect of Selenium (selenite, –SeO32−) dose and irradiance intensity in Chlorella cultures. AMB Express, 7(1). https://doi.org/10.1186/s13568-017-0348-7

  28. Zhang, Z., Zhang, J., & Xiao, J. (2014). Selenoproteins and selenium status in bone physiology and pathology. Biochimica et Biophysica Acta - General Subjects. https://doi.org/10.1016/j.bbagen.2014.08.001

    Article  Google Scholar 

  29. Li, Y., Mu, J., Chen, D., Han, F., Xu, H., Kong, F., … Feng, B. (2013). Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation. Bioresource Technology. https://doi.org/10.1016/j.biortech.2013.08.153

  30. Reunova, Y. A., Aizdaicher, N. A., Khristoforova, N. K., & Reunov, A. A. (2007). Effects of selenium on growth and ultrastructure of the marine unicellular alga Dunaliella salina (Chlorophyta). Russian Journal of Marine Biology, 33(2), 125–132. https://doi.org/10.1134/S1063074007020071

    Article  CAS  Google Scholar 

  31. Dazhi, W., Zhaodi, C., Shaojing, L., & Yahui, G. (2003). Toxicity and accumulation of selenite in four microalgae. Chinese Journal of Oceanology and Limnology. https://doi.org/10.1007/bf02842844

    Article  Google Scholar 

  32. Sun, X. M., Ren, L. J., Bi, Z. Q., Ji, X. J., Zhao, Q. Y., Jiang, L., & Huang, H. (2018). Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp. Biotechnology for Biofuels. https://doi.org/10.1186/s13068-018-1065-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dou, X., Lu, X.-H., Lu, M.-Z., Yu, L.-S., Xue, R., & Ji, J.-B. (2013). The effects of trace elements on the lipid productivity and fatty acid composition of Nannochloropis oculata. Journal of Renewable Energy. https://doi.org/10.1155/2013/671545

    Article  Google Scholar 

  34. Ra, C. H., Kang, C. H., Kim, N. K., Lee, C. G., & Kim, S. K. (2015). Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renewable Energy. https://doi.org/10.1016/j.renene.2015.02.002

    Article  Google Scholar 

  35. Li, Z. Y., Guo, S. Y., & Li, L. (2003). Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology. https://doi.org/10.1016/S0960-8524(03)00041-5

    Article  PubMed  Google Scholar 

  36. Schiavon, M., Ertani, A., Parrasia, S., & Vecchia, F. D. (2017). Selenium accumulation and metabolism in algae. Aquatic Toxicology. https://doi.org/10.1016/j.aquatox.2017.05.011

    Article  PubMed  Google Scholar 

  37. Gojkovic, Ž, Garbayo, I., Ariza, J. L. G., Márová, I., & Vílchez, C. (2015). Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Research. https://doi.org/10.1016/j.algal.2014.12.008

    Article  Google Scholar 

  38. Minhas, A. K., Hodgson, P., Barrow, C. J., & Adholeya, A. (2016). A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.00546

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zheng, Y., Li, Z., Tao, M., Li, J., & Hu, Z. (2017). Effects of selenite on green microalga Haematococcus pluvialis: Bioaccumulation of selenium and enhancement of astaxanthin production. Aquatic Toxicology. https://doi.org/10.1016/j.aquatox.2016.12.008

    Article  PubMed  Google Scholar 

  40. Liu, W., Ming, Y., Li, P., & Huang, Z. (2012). Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2012.01.018

    Article  PubMed  Google Scholar 

  41. Chen, T. F., Zheng, W. J., Wong, Y. S., & Yang, F. (2008). Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in spirulina platensis. Journal of Integrative Plant Biology. https://doi.org/10.1111/j.1744-7909.2007.00600.x

    Article  PubMed  Google Scholar 

  42. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology. https://doi.org/10.1016/j.biortech.2013.05.105

    Article  PubMed  Google Scholar 

  43. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., … Bougaran, G. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels. https://doi.org/10.1186/s13068-015-0220-4

  44. Rizwan, M., Mujtaba, G., & Lee, K. (2017). Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnology and Bioprocess Engineering, 22(1), 68–75. https://doi.org/10.1007/s12257-016-0628-0

    Article  CAS  Google Scholar 

  45. Che, R., Huang, L., & Yu, X. (2015). Enhanced biomass production, lipid yield and sedimentation efficiency by iron ion. Bioresource Technology. https://doi.org/10.1016/j.biortech.2015.05.009

    Article  PubMed  Google Scholar 

  46. Han, S. F., Jin, W., Abomohra, A. E. F., Tu, R., Zhou, X., He, Z., … Xie, G. jun. (2019). Municipal wastewater enriched with trace metals for enhanced lipid production of the biodiesel-promising microalga Scenedesmus obliquus. Bioenergy Research. https://doi.org/10.1007/s12155-019-10042-5

Download references

Funding

This study was financially supported by the Scientific Centre of Excellence for Marine Bioprospecting–BioProCro, a project co-financed by the Croatian Government and the European Union through the European Regional Development Fund–the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01).

Author information

Authors and Affiliations

Authors

Contributions

MGP: conceptualization, methodology, visualization, writing—original draft. SB: conceptualization, validation, writing—review and editing. LČ: conceptualization, validation, writing—review and editing. AS: conceptualization. NTP: validation, writing—review and editing. MDS: resources, funding acquisition. ISP: validation, writing—review and editing. RČR: resources, funding acquisition, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sanja Babić.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perečinec, M.G., Babić, S., Čižmek, L. et al. Selenite as a Lipid Inductor in Marine Microalga Dunaliella tertiolecta: Comparison of One-Stage and Two-Stage Cultivation Strategies. Appl Biochem Biotechnol 194, 930–949 (2022). https://doi.org/10.1007/s12010-021-03659-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03659-w

Keywords

Navigation