Skip to main content
Log in

Azadirachta indica MicroRNAs: Genome-Wide Identification, Target Transcript Prediction, and Expression Analyses

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs are short, endogenous, non-coding RNAs, liable for essential regulatory function. Numerous miRNAs have been identified and studied in plants with known genomic or small RNA resources. Despite the availability of genomic and transcriptomic resources, the miRNAs have not been reported in the medicinal tree Azadirachta indica (Neem) till date. Here for the first time, we report extensive identification of miRNAs and their possible targets in A. indica which might help to unravel their therapeutic potential. A comprehensive search of miRNAs in the A. indica genome by C-mii tool was performed. Overall, 123 miRNAs classified into 63 families and their stem-loop hairpin structures were predicted. The size of the A. indica (ain)-miRNAs ranged between 19 and 23 nt in length, and their corresponding ain-miRNA precursor sequence MFEI value averaged as −1.147 kcal/mol. The targets of ain-miRNAs were predicted in A. indica as well as Arabidopsis thaliana plant. The gene ontology (GO) annotation revealed the involvement of ain-miRNA targets in developmental processes, transport, stress, and metabolic processes including secondary metabolism. Stem-loop qRT-PCR was carried out for 25 randomly selected ain-miRNAs and differential expression patterns were observed in different A. indica tissues. Expression of miRNAs and its targets shows negative correlation in a dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ain-miRNA:

Azadirachta indica microRNA

DCL1:

Dicer-like-1

EST:

expressed sequence tag

GRFs :

growth regulating factors

HEN1:

Hua-Enhancer1

MFE:

minimum folding free energy

MFEI:

minimal folding energy index

NGS:

next-generation sequencing

NF-YA :

nuclear transcription factor Y subunit alpha

pri-miRNAs:

primary miRNA transcripts

pre-miRNAs:

precursor miRNA transcripts

RISC:

RNA-induced silencing complex

SPL :

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE

References

  1. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297. https://doi.org/10.1016/S0092-8674(04)00045-5.

    Article  CAS  Google Scholar 

  2. Kurihara, Y., & Watanabe, Y. (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proceedings of the National Academy of Sciences, 101(34), 12753–12758. https://doi.org/10.1073/pnas.0403115101.

    Article  CAS  Google Scholar 

  3. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., & Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science, 307(5711), 932–935. https://doi.org/10.1126/science.1107130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bollman, K. M., Aukerman, M. J., Park, M.-Y., Hunter, C., Berardini, T. Z., & Poethig, R. S. (2003). HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development, 130(8), 1493–1504. https://doi.org/10.1242/dev.00362.

    Article  CAS  PubMed  Google Scholar 

  5. Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669–687. https://doi.org/10.1016/j.cell.2009.01.046.

    Article  CAS  PubMed  Google Scholar 

  6. Jones-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annual Reveiw Plant Biology, 57(1), 19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218.

    Article  CAS  Google Scholar 

  7. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854. https://doi.org/10.1016/0092-8674(93)90529-Y.

    Article  CAS  PubMed  Google Scholar 

  8. Feng, J., Wang, K., Liu, X., Chen, S., & Chen, J. (2009). The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene, 437(1–2), 14–21. https://doi.org/10.1016/j.gene.2009.01.017.

    Article  CAS  PubMed  Google Scholar 

  9. Sunkar, R., Girke, T., Jain, P. K., & Zhu, J. K. (2005). Cloning and characterization of microRNAs from rice. The Plant Cell, 17(5), 1397–1411. https://doi.org/10.1105/tpc.105.031682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., Zhu, J. K., & Sun, Q. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 8(6), R96.

  11. Han, J., Li, A., Liu, H., Wen, X., Zhao, M., Korir, N. B., & Fang, J. (2014). Computational identification of microRNAs in the strawberry (Fragaria × ananassa) genome sequence and validation of their precise sequences by miR-RACE. Gene, 536(1), 151–162. https://doi.org/10.1016/j.gene.2013.11.023.

    Article  CAS  PubMed  Google Scholar 

  12. Han, J., Xie, H., Sun, Q., Wang, J., Lu, M., Wang, W., & Pan, J. (2014). Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica). Gene, 546(2), 367–377. https://doi.org/10.1016/j.gene.2014.05.050.

    Article  CAS  PubMed  Google Scholar 

  13. Abreu, P. M. V., Gaspar, C. G., Buss, D. S., Ventura, J. A., Ferreira, P. C. G., & Fernandes, P. M. B. (2014). Carica papaya microRNAs are responsive to Papaya meleira virus infection. PLoS One, 9(7), e103401. https://doi.org/10.1371/journal.pone.0103401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C., Zhu, Y., Guo, X., Sun, C., Luo, H., Song, J., & Chen, S. (2013). Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics, 14(1), 245.

  15. Gébelin, V., Argout, X., Engchuan, W., Pitollat, B., Duan, C., Montoro, P., & Leclercq, J. (2012). Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biology, 12(1), 18. https://doi.org/10.1186/1471-2229-12-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jain, M., Chevala, V. V. S. N., & Garg, R. (2014). Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. Journal of Experimental Botany, 65(20), 5945–5958. https://doi.org/10.1093/jxb/eru333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prakash, P., Ghosliya, D., & Gupta, V. (2015). Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene, 554(2), 181–195. https://doi.org/10.1016/j.gene.2014.10.046.

    Article  CAS  PubMed  Google Scholar 

  18. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). Prediction of plant microRNA targets. Cell, 110(4), 513–520. https://doi.org/10.1016/S0092-8674(02)00863-2.

    Article  CAS  PubMed  Google Scholar 

  19. Khraiwesh, B., Zhu, J.-K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 137–148. https://doi.org/10.1016/j.bbagrm.2011.05.001.

    Article  CAS  Google Scholar 

  20. Chuck, G., Candela, H., & Hake, S. (2009). Big impacts by small RNAs in plant development. Current Opinion in Plant Biology, 12(1), 81–86. https://doi.org/10.1016/j.pbi.2008.09.008.

    Article  CAS  PubMed  Google Scholar 

  21. Gou, J.-Y., Felippes, F. F., Liu, C. J., Weigel, D., & Wang, J.-W. (2011). Negative regulation of Anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell, 23(4), 1512–1522. https://doi.org/10.1105/tpc.111.084525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma, D., Tiwari, M., Pandey, A., Bhatia, C., Sharma, A., & Trivedi, P. K. (2016). MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiology, 171(2), 944–959. https://doi.org/10.1104/pp.15.01831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng, D. W. K., Zhang, C., Miller, M., Palmer, G., Whiteley, M., Tholl, D., & Chen, Z. J. (2011). Cis-and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. The Plant Cell, 23(5), 1729–1740. https://doi.org/10.1105/tpc.111.083915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Veitch, G. E., Boyer, A., & Ley, S. V. (2008). The azadirachtin story. Angewandte Chemie International Edition, 47(49), 9402–9429. https://doi.org/10.1002/anie.200802675.

    Article  CAS  PubMed  Google Scholar 

  25. Subramani, R., Gonzalez, E., Nandy, S. B., Arumugam, A., Camacho, F., Medel, J., & Lakshmanaswamy, R. (2017). Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget, 8(7), 10891. https://dx.doi.org/10.18632%2Foncotarget.8055–10904.

    Article  Google Scholar 

  26. Ponnusamy, S., Haldar, S., Mulani, F., Zinjarde, S., Thulasiram, H., & RaviKumar, A. (2015). Gedunin and azadiradione: human pancreatic alpha-amylase inhibiting limonoids from neem (Azadirachta indica) as anti-diabetic agents. PLoS One, 10(10), e0140113. https://doi.org/10.1371/journal.pone.0140113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, L., Do Dang Khoa Phan, J. Z., Ong, P.-S., Thuya, W. L., Soo, R., Wong, A. L. A., & Sethi, G. (2016). Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development. Oncotarget, 7(28), 44790. https://dx.doi.org/10.18632%2Foncotarget.8316–44802.

    Article  Google Scholar 

  28. Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandyopadhyay, U. (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current Science, 82(11), 1336–1345.

    CAS  Google Scholar 

  29. Brahmachari, G. (2004). Neem–an omnipotent plant: a retrospection. Chembiochem, 5(4), 408–421. https://doi.org/10.1002/cbic.200300749.

    Article  CAS  PubMed  Google Scholar 

  30. Krishnan, N. M., Pattnaik, S., Deepak, S. A., Hariharan, A. K., Gaur, P., Chaudhary, R., & Panda, B. (2011). De novo sequencing and assembly of Azadirachta indica fruit transcriptome. Current Science, 1553–1561.

  31. Krishnan, N. M., Jain, P., Gupta, S., Hariharan, A. K., & Panda, B. (2016). An Improved Genome Assembly of Azadirachta indica A. Juss. G3: Genes, Genomes, Genetics, 6(7), 1835–1840. https://doi.org/10.1534/g3.116.030056.

    Article  CAS  Google Scholar 

  32. Krishnan, N. M., Pattnaik, S., Jain, P., Gaur, P., Choudhary, R., Vaidyanathan, S., & Nair, J. (2012). A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics, 13(1), 1–13.

    Article  Google Scholar 

  33. Rajakani, R., Narnoliya, L., Sangwan, N. S., Sangwan, R. S., & Gupta, V. (2014). Subtractive transcriptomes of fruit and leaf reveal differential representation of transcripts in Azadirachta indica. Tree Genetics & Genomes, 10(5), 1331–1351. https://doi.org/10.1007/s11295-014-0764-7.

    Article  Google Scholar 

  34. Narnoliya, L. K., Rajakani, R., Sangwan, N. S., Gupta, V., & Sangwan, R. S. (2014). Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem). Molecular Biology Reports, 41(5), 3147–3162. https://doi.org/10.1007/s11033-014-3174-x.

    Article  CAS  PubMed  Google Scholar 

  35. Kuravadi, N. A., Yenagi, V., Rangiah, K., Mahesh, H. B., Rajamani, A., Shirke, M. D., & Siddappa, S. (2015). Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree. PeerJ, 3, e1066. https://doi.org/10.7717/peerj.1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pandreka, A., Dandekar, D. S., Haldar, S., Uttara, V., Vijayshree, S. G., Mulani, F. A., & Thulasiram, H. V. (2015). Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem (Azadirachta indica). BMC Plant Biology, 15(1), 214. https://doi.org/10.1186/s12870-015-0593-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Numnark, S., Mhuantong, W., Ingsriswang, S., & Wichadakul, D. (2012). C-mii: a tool for plant miRNA and target identification. BMC Genomics, 13(Suppl 7), S16. https://doi.org/10.1186/1471-2164-13-S7-S16.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meyers, B. C., Axtell, M. J., Bartel, B., Bartel, D. P., Baulcombe, D., Bowman, J. L., & Green, P. J. (2008). Criteria for annotation of plant MicroRNAs. The Plant Cell, 20(12), 3186–3190. https://doi.org/10.1105/tpc.108.064311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prakash, P., Rajakani, R., & Gupta, V. (2016). Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Computational Biology and Chemistry, 61, 62–74. https://doi.org/10.1016/j.compbiolchem.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  40. Dai, X., & Zhao, P. X. (2011). psRNA Target: a plant small RNA target analysis server. Nucleic Acids Research, 39(Suppl 2), W155–W159. https://doi.org/10.1093/nar/gkr319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conesa, A., Gotz, S., Miguel, J., Gomez, G., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676. https://doi.org/10.1093/bioinformatics/bti610.

    Article  CAS  PubMed  Google Scholar 

  42. Rajakani, R., Narnoliya, L., Sangwan, N. S., Sangwan, R. S., & Gupta, V. (2013). Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds. BMC Research Notes, 6(1), 125. https://doi.org/10.1186/1756-0500-6-125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1), 1–12. https://doi.org/10.1186/1746-4811-3-12.

    Article  CAS  Google Scholar 

  44. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C T method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  45. Archak, S., & Nagaraju, J. (2007). Computational prediction of rice (Oryza sativa) miRNA targets. Genomics, Proteomics & Bioinformatics, 5(3–4), 196–206. https://doi.org/10.1016/S1672-0229(08)60007-8.

    Article  CAS  Google Scholar 

  46. He, C., Li, Y.-X., Zhang, G., Gu, Z., Yang, R., Li, J., & Wang, J. (2012). MiRmat: mature microRNA sequence prediction. PLoS One, 7(12), e51673. https://doi.org/10.1371/journal.pone.0051673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, Y., Wei, B., Liu, H., Li, T., & Rayner, S. (2011). MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics, 12(1), 1–14.

    Article  Google Scholar 

  48. Tyagi, S., Vaz, C., Gupta, V., Bhatia, R., Maheshwari, S., Srinivasan, A., & Bhattacharya, A. (2008). CID-miRNA: a web server for prediction of novel miRNA precursors in human genome. Biochemical and Biophysical Research Communications, 372(4), 831–834. https://doi.org/10.1016/j.bbrc.2008.05.134.

    Article  CAS  PubMed  Google Scholar 

  49. Grundhoff, A., Sullivan, C. S., & Ganem, D. (2006). A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpes viruses. RNA, 12(5), 733–750. https://doi.org/10.1261/rna.2326106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meng, J., Liu, D., Sun, C., & Luan, Y. (2014). Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine. BMC Bioinformatics, 15(1), 423. https://doi.org/10.1186/s12859-014-0423-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mendes, N. D., Freitas, A. T., & Sagot, M.-F. (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Research, 37(8), 2419–2433. https://doi.org/10.1093/nar/gkp145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in plants. Genes and Development, 16(13), 1616–1626. https://doi.org/10.1101/gad.1004402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chi, X., Yang, Q., Chen, X., Wang, J., Pan, L., Chen, M., & Yu, S. (2011). Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One, 6(11), e27530. https://doi.org/10.1371/journal.pone.0027530.

  54. Xie, K., Wu, C., & Xiong, L. (2006). Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology, 142(1), 280–293. https://doi.org/10.1104/pp.106.084475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He, J., Xu, M., Willmann, M. R., McCormick, K., Hu, T., Yang, L., & Poethig, R. S. (2018). Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics, 14(4), e1007337. https://doi.org/10.1371/journal.pgen.1007337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, G., Park, M. Y., Conway, S. R., Wang, J. W., Weigel, D., & Poethig, R. S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138(4), 750–759. https://doi.org/10.1016/j.cell.2009.06.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, M. Y., Zhu, J. X., Zhang, M., & Wang, L. (2016). Advances on plant miR169/NF-YA regulation modules. Yi Chuan = Hereditas, 38(8), 700–706. https://doi.org/10.16288/j.yczz.15-526.

  58. Casadevall, R., Rodriguez, R. E., Debernardi, J. M., Palatnik, J. F., & Casati, P. (2013). Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. The Plant Cell, 25(9), 3570–3583. https://doi.org/10.1105/tpc.113.117473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bari, R., Pant, B. D., Stitt, M., & Scheible, W. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 141(3), 988–999. https://doi.org/10.1104/pp.106.079707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yue, E., Liu, Z., Li, C., Li, Y., Liu, Q., & Xu, J.-H. (2017). Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). Plant Cell Reports, 36(7), 1171–1182. https://doi.org/10.1007/s00299-017-2146-8.

    Article  CAS  PubMed  Google Scholar 

  61. Ren, J., Zhou, J. J., Duan, W. K., Song, X. M., Liu, T. K., Hou, X. L., & Li, Y. (2014). Copper stress induces the differential expression of microRNAs in non-heading Chinese cabbage. Biologia Plantarum, 58(3), 491–498. https://doi.org/10.1007/s10535-014-0426-5.

    Article  CAS  Google Scholar 

  62. Pei, H., Ma, N., Chen, J., Zheng, Y., Tian, J., Li, J., & Gao, J. (2013). Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. PLoS One, 8(5), e64290. https://doi.org/10.1371/journal.pone.0064290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research work was financially supported under BSC0203 and Institutional major laboratory project (MLP04) by Council of Scientific and Industrial Research (CSIR), Govt. of India. Research fellowship from University Grants Commission, Govt. of India, is duly acknowledged. AcSIR is acknowledged for the academic support. The authors are sincerely thankful to the Director, CSIR-CIMAP, for encouragement, support and providing the required laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

RR and VG conceived and designed the experimental plans. RR, PP, and DG applied the plan and carried out experiments. RS and AS helped in data collection and analysis of experiments. RR carried out the stem-loop qRT-PCR, qPCR analysis, and wrote the manuscript. VG guided the experimental designs and finalized the manuscript. All the authors have read and agree to the content of the finalized manuscript.

Corresponding author

Correspondence to Vikrant Gupta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

Schematic representation of in silico analysis strategy used for the identification of ain-miRNAs and their potential mRNA transcript targets (PPTX 82 kb)

Supplementary Fig. 2

Stem-loop hairpin structures of C-mii predicted 123 A. indica miRNAs. Mature ain-miRNA nucleotides are marked in red. The precursor’s nucleotide positions in primary ain-miRNAs are indicated in brackets (PPTX 1878 kb)

Supplementary Figure 2

(PDF 911 kb)

Supplementary Fig. 3

Nucleotide dominance in each base position and nucleotide probability analysis in identified mature ain-miRNA sequences (PPTX 512 kb)

Supplementary Fig. 4

a Blast2GO examination of microRNA targets predicted in A. indica leaf transcriptome SRX096301, b Blast2GO analysis of miRNA targets predicted in A. indica seed transcriptome SRR342216 (PPTX 388 kb)

Supplementary Fig. 5

Expression analyses of ain-miRNAs in different neem tissues (immature fruit, leaf, fruit mesocarp, and fruit endocarp) by using semi-quantitative stem-loop RT-PCR. Randomly selected ain-miRNAs were checked for transcript/expression level (miR156, miR169g, miR169h, miR172, miR396b, miR399, miR403c, miR5021, miR5139, miR5522, miR1533f, miR1533g, miR5512, miR157, miR529, miR776, miR1088-5p, miR1511, miR1525, miR5025, miR1533a, miR1533c, miR1533i, miR1533d, and miR1533h) (XLSX 13 kb)

Supplementary Table 1

Primers used in stem-loop qRT-PCR and qRT-PCR studies (XLS 70 kb)

Supplementary Table 2

A. indica mature miRNA sequences with number of mismatches between miRNA and miRNA*, primary miRNA MFE (kcal/mol), precursor miRNA MFE, and precursor miRNA MFEI (kcal/mol) (DOCX 33 kb)

Supplementary Table 3

A. indica mature miRNA sequences identified by C-mii-based computer prediction and their characteristic features (XLS 69 kb)

Supplementary Table 4

psRNATarget analysis of miRNA targets predicted in A. thaliana transcriptome by using the identified A. indica mature miRNA sequences as query (XLS 114 kb)

Supplementary Table 5

Blast2GO analysis of miRNA targets predicted in A. indica leaf transcriptome SRX096301 by using the identified A. indica mature miRNA sequences as query (XLS 63 kb)

Supplementary Table 6

Blast2GO analysis of miRNA targets predicted in A. indica seed transcriptome SRR342216 by using the identified A. indica mature miRNA sequences as query (XLS 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajakani, R., Prakash, P., Ghosliya, D. et al. Azadirachta indica MicroRNAs: Genome-Wide Identification, Target Transcript Prediction, and Expression Analyses. Appl Biochem Biotechnol 193, 1924–1944 (2021). https://doi.org/10.1007/s12010-021-03500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03500-4

Keywords

Navigation