Skip to main content
Log in

Biochemical Characterization of a Lipolytic Enzyme From Aspergillus oryzae That Hydrolyzes Triacylglycerol and Sterol Esters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel lipolytic enzyme-encoding gene, lipO745, from Aspergillus oryzae RIB40 was cloned and expressed in Pichia pastoris. Purified recombinant LipO745 (rLipO745) had a molecular mass of approximately 60 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. rLipO745 exhibited maximum activity at 40 °C and pH 7.0 and was stable at temperatures ≤ 40 °C. The substrate specificity of purified rLipO745 was analyzed using α-naphthyl esters as artificial substrates and various triacylglycerol and sterol esters as natural substrates. From among a panel of α-naphthyl esters (C2–C16), α-naphthyl butyrate (C4), with an activity of 269 ± 3.3 units/mg protein, was the optimal substrate for hydrolysis by the purified recombinant protein. The Km and kcat values of rLiO745 for the C4 substrate were 0.073 ± 0.0012 mM and 608 ± 108 s−1, respectively. The purified recombinant enzyme had considerable hydrolytic activity toward tributyrin, tripalmitin, and triolein, indicating lipase activity, and toward cholesteryl acetate, butyrate, palmitate, and oleate, indicating sterol esterase activity. Transesterification activities between tributyrin and cholesterol or between tributyrin and campesterol were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390–397. https://doi.org/10.1016/S0958-1669(02)00341-5.

    Article  CAS  PubMed  Google Scholar 

  2. Bornscheuer, U. T. (2002). Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiology Review, 26(1), 73–81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x.

    Article  CAS  Google Scholar 

  3. Saxena, R. K., Ghosh, P. K., Gupta, R., Davidson, W. S., Bradoo, S., & Gulati, R. (1999). Microbial lipases: potential biocatalysts for future industry. Current Science, 77, 101–115.

    CAS  Google Scholar 

  4. Singh, A. K., & Mukphpadhyay, M. (2012). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166(2), 486–520. https://doi.org/10.1007/s12010-011-9444-3.

    Article  CAS  PubMed  Google Scholar 

  5. Vaquero, M. E., Barriuso, J., Martínez, M. J., & Prieto, A. (2016). Properties, structure, and applications of microbial sterol esterases. Applied Microbiology and Biotechnology, 100(5), 2047–2061. https://doi.org/10.1007/s00253-015-7258-x.

    Article  CAS  PubMed  Google Scholar 

  6. Mancheño, J. M., Pernas, M. A., Martínez, M. J., Ochea, B., Rúa, M. L., & Hermoso, J. A. (2003). Structural insight into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97 Å resolution. Journal of Molecular Biology, 332(5), 1059–1069. https://doi.org/10.1016/j.jmb.2003.08.005.

    Article  CAS  PubMed  Google Scholar 

  7. Calero-Rueda, O., Plou, F. J., Ballesteros, A., Martínez, A. T., & Martínez, M. J. (2002). Production, isolation and characterization of a sterol esterase from Ophiostoma piceae. Biochimica et Biophysica Acta, 1599(1-2), 28–35. https://doi.org/10.1016/S1570-9639(02)00378-3.

    Article  CAS  PubMed  Google Scholar 

  8. Kontkanen, H., Tenkanen, M., & Reinikainen, T. (2006). Purification and characterization of a novel steryl esterase from Melanocarpus albomyces. Enzyme and Microbial Technology, 39(2), 265–273. https://doi.org/10.1016/j.enzmictec.2005.10.013.

    Article  CAS  Google Scholar 

  9. Maeda, A., Mizuno, T., Bunya, M., Sugihara, S., Nakayama, D., Tsunasawa, S., Hirota, Y., & Sugihara, A. (2008). Characterization of novel cholesterol esterase from Trichoderma sp. AS59 with high ability to synthesize steryl esters. Journal of Bioscience and Bioengineering, 105(4), 341–349. https://doi.org/10.1263/jbb.105.341.

    Article  CAS  PubMed  Google Scholar 

  10. Vaquero, M. E., Prieto, A., Barriuso, J., & Martínez, M. J. (2015). Expression and properties of three novel fungal lipases/sterol esterases predicted in silico: comparison with other enzymes of the Candida rugosa-like family. Applied Microbiology and Biotechnology, 99(23), 10057–10067. https://doi.org/10.1007/s00253-015-6890-9.

    Article  CAS  PubMed  Google Scholar 

  11. Nardini, M., & Dijkstra, B. W. (1999). α/β hydrolase hold enzymes: the family keeps growing. Current Opinion in Structural Biology, 9(6), 732–737.

    Article  CAS  Google Scholar 

  12. Verger, R. (1997). Interfacial activation of lipases: fact and artifacts. Trends in Biotechnology, 15(1), 32–38.

    Article  CAS  Google Scholar 

  13. Ohnishi, K., Yoshida, Y., Toida, J., & Sekiguchi, J. (1994). Purification and characterization of a novel lipolytic enzyme from Aspergillus oryzae. Journal of Fermentation and Bioengineering, 77, 413–419.

    Article  Google Scholar 

  14. Maeda, H., Yamagata, Y., Abe, K., Hasegawa, F., Machida, M., Ishioka, R., Gomi, K., & Nakajima, T. (2005). Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Applied Microbiology and Biotechnology, 67(6), 778–788. https://doi.org/10.1007/s00253-004-1853-6.

    Article  CAS  PubMed  Google Scholar 

  15. Toida, J., Kondoh, K., Fukuzawa, M., Ohnishi, K., & Sekiguchi, J. (1995). Purification and characterization of a lipase from Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 59(7), 1199–1203.

    Article  CAS  Google Scholar 

  16. Toida, J., Arikawa, Y., Kondoh, K., Fukuzawa, M., & Sekiguchi, J. (1998). Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 62(4), 759–763.

    Article  CAS  Google Scholar 

  17. Koseki, T., Asai, S., Saito, N., Mori, M., Sakaguchi, Y., Ikeda, K., & Shiono, Y. (2013). Characterization of a novel lipolytic enzyme from Aspergillus oryzae. Applied Microbiology and Biotechnology, 97(12), 5351–5357. https://doi.org/10.1007/s00253-012-4391-7.

    Article  CAS  PubMed  Google Scholar 

  18. Tőke, E. R., Nagy, V., Recseg, K., Szakács, G., & Poppe, L. (2007). Production and application of novel sterol esterase from Aspergillus strains by solid state fermentation. Journal of the American Oil Chemists' Society, 84(10), 907–915. https://doi.org/10.1007/s11746-007-1127-4.

    Article  CAS  Google Scholar 

  19. Koseki, T., Otsuka, M., Mizuno, T., & Shiono, Y. (2017). Mutational analysis of Kex2 recognition sites and a disulfide bond in tannase from Aspergillus oryzae. Biochemical and Biophysical Research Communications, 482(4), 1165–1169. https://doi.org/10.1016/j.bbrc.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  21. Sundberg, M., Poutanen, K., Makkanen, P., & Linko, M. (1990). An extracellular esterase of Aspergillus awamori. Biotechnology and Applied Biochemistry, 12, 670–680.

    CAS  Google Scholar 

  22. Kontkanen, H., Reinikainen, T., & Saloheimo, M. (2006). Cloning and expression of a Melanocarpus albomyces steryl esterase gene in Pichia pastoris and Trichoderma reesei. Biotechnology and Bioengineering, 94(3), 407–415. https://doi.org/10.1002/bit.20686.

    Article  CAS  PubMed  Google Scholar 

  23. Schrag, J. D., Li, Y., Wu, S., & Cygler, M. (1991). Ser-His-Glu triad forms the catalytic site of the lipase from Geotricum candidum. Nature, 351(6329), 761–764.

    Article  CAS  Google Scholar 

  24. Grochulsk, P., Li, Y., Schrag, J. D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., & Cygler, M. (1993). Insights into interfacial activation from an open structure of Candida rugosa lipase. Journal of Biological Chemistry, 268, 12843–12847.

    Google Scholar 

  25. Gutiérrez-Fernández, J., Vaquero, M. E., Prieto, A., Barriuso, J., Martínez, M. J., & Hermoso, J. A. (2014). Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release. Journal of Structural Biology, 187(3), 215–222. https://doi.org/10.1016/j.jsb.2014.07.007.

    Article  CAS  PubMed  Google Scholar 

  26. Brenner, S. (1988). The molecular evolution of genes and proteins: a tale of two serines. Nature, 334(6182), 528–530.

    Article  CAS  Google Scholar 

  27. Vaquero, M. E., Barriuso, J., Medrano, F. J., Prieto, A., & Martínez, M. J. (2015). Heterologous expression of a fungal sterol esterase/lipase in different hosts: effect on solubility, glycosylation and production. Journal of Bioscience and Bioengineering, 120(6), 637–643. https://doi.org/10.1016/j.jbiosc.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  28. Chang, S. W., Lee, G. C., & Shaw, J. F. (2006). Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. Journal of Agricultural and Food Chemistry, 54(3), 815–822. https://doi.org/10.1021/jf052183k.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, G. C., Lee, L. C., Sava, V., & Shaw, J. F. (2002). Multiple mutagenesis of non-universal serine codons of the Candida rugosa lip2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpression in Pichia pastoris. Biochemical Journal, 366(2), 603–611. https://doi.org/10.1042/bj20020404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang, S. W., Lee, G. C., & Shaw, J. F. (2006). Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of purified enzyme. Journal of Agricultural and Food Chemistry, 54(16), 5831–5838. https://doi.org/10.1021/jf060835e.

    Article  CAS  PubMed  Google Scholar 

  31. Tang, S. J., Shaw, J. F., Sun, K. H., Chang, T. Y., Lin, C. K., Lo, Y. C., & Lee, G. C. (2001). Recombinant expression and characterization of the Candida rugosa LIP4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability. Archives of Biochemistry and Biophysics, 387(1), 93–98. https://doi.org/10.1006/abbi.2000.2235.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, L. C., Yen, C. C., Malmis, C. C., Chen, L. F., Chen, J. C., Lee, G. C., & Shaw, J. F. (2011). Characterization of codon-optimized recombinant Candida rugosa lipase 5 (LIP5). Journal of Agricultural and Food Chemistry, 59(19), 10693–10698. https://doi.org/10.1021/jf202161a.

    Article  CAS  PubMed  Google Scholar 

  33. Holmquist, M., Tessier, D. C., & Cygler, M. (1997). High-level production of recombinant Geotrichum candidum lipases in yeast Pichia pastoris. Protein Expression and Purification, 11(1), 35–40.

    Article  CAS  Google Scholar 

  34. Cedillo, V. B., Plou, F. J., & Martínez, M. J. (2012). Recombinant sterol esterase from Ophiostoma piceae: an improved biocatalyst expressed in Pichia pastoris. Microbial Cell Factories, 11(1), 73. https://doi.org/10.1186/1475-2859-11-73.

    Article  CAS  PubMed  Google Scholar 

  35. Macauley-Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (1995). Heterologous protein production using the Pichia pastoris expression system. Yeast, 11, 1331–1344.

    Article  Google Scholar 

  36. Daly, R., & Hearn, M. T. W. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 18(2), 119–138. https://doi.org/10.1002/jmr.687.

    Article  CAS  PubMed  Google Scholar 

  37. Bause, E. (1983). Structural requirements of N-glycosylation of proteins. Biochemical Journal, 209(2), 331–336. https://doi.org/10.1042/bj2090331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Koseki.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing financial interests.

Ethical Statement

This study does not involve any human testing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 63 kb)

ESM 2

(PPTX 39 kb)

ESM 3

(PPTX 128 kb)

ESM 4

(PPTX 362 kb)

ESM 5

(PPTX 395 kb)

ESM 6

(PPTX 682 kb)

ESM 7

(PPTX 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichikawa, K., Yoshida, A., Shiono, Y. et al. Biochemical Characterization of a Lipolytic Enzyme From Aspergillus oryzae That Hydrolyzes Triacylglycerol and Sterol Esters. Appl Biochem Biotechnol 192, 910–922 (2020). https://doi.org/10.1007/s12010-020-03360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03360-4

Keywords

Navigation