Skip to main content
Log in

A Collagenolytic Aspartic Protease from Thermomucor indicae-seudaticae Expressed in Escherichia coli and Pichia pastoris

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteases are produced by the most diverse microorganisms and have a wide spectrum of applications. However, the use of wild microorganisms, mainly fungi, for enzyme production has some drawbacks. They are subject to physiological instability due to metabolic adaptations, causing complications and impairments in the production process. Thus, the objective of this work was to promote the heterologous expression of a collagenolytic aspartic protease (ProTiN31) from Thermomucor indicae seudaticae in Escherichia coli and Pichia pastoris. The pET_28a (+) and pPICZαA vectors were synthesized containing the gene of the enzyme and transformed into E. coli and P. pastoris, respectively. The recombinant enzymes produced by E. coli and P. pastoris showed maximum activity at pH 5.0 and 50 °C, and pH 5.0 and 60 °C, respectively. The enzyme produced by P. pastoris showed better thermostability when compared to that produced by E. coli. Both enzymes were stable at pH 6.0 and 6.5 for 24 h at 4 °C, and sensitive to pepstatin A, β-mercaptoethanol, and Hg2+. Comparing the commercial collagen hydrolysate (Artrogen duo/Brazil) and gelatin degradation using protease from P. pastoris, they showed similar peptide profiles. There are its potential applications in a wide array of industrial sectors that use collagenolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–634.

    Article  CAS  Google Scholar 

  2. Silva, R. R. (2017). Bacterial and fungal proteolytic enzymes: Production, catalysis and potential applications. Applied Biochemistry and Biotechnology, 183(1), 1–19. https://doi.org/10.1007/s12010-017-2427-2.

    Article  CAS  PubMed  Google Scholar 

  3. Silva, R. R. (2018). Exploring microbial peptidases for cheese production: A viewpoint on the current conjecture. Journal of Agricultural and Food Chemistry, 66(6), 1305–1306. https://doi.org/10.1021/acs.jafc.8b00018.

    Article  CAS  PubMed  Google Scholar 

  4. Silva, R. R. (2019). Investigating the specificity of peptidases: Scientific relevance and functional implications for cellular dynamics. Journal of Cellular Biochemistry, 120(4), 4800–4801. https://doi.org/10.1002/jcb.28095.

    Article  CAS  PubMed  Google Scholar 

  5. Rawlings, N. D., Barret, A. J., & Bateman, A. (2011). Asparagine peptide lyases. The Journal of Biological Chemistry, 286(44), 38321–38328.

    Article  CAS  Google Scholar 

  6. Horimoto, Y., Dee, D., & Yada, R. (2009). Multifunctional aspartic peptidase prosegments. New Biotechnology, 25(5), 318–324.

    Article  CAS  Google Scholar 

  7. Mandujano-González, V., Villa-Tanaca, L., Anducho-Reyes, M. A., & Mercado-Flores, Y. (2016). Secreted fungal aspartic proteases: A review. Revista Iberoamericana de Micología, 33(2), 76–82.

    Article  Google Scholar 

  8. Mamo, J., & Assefa, F. (2018). The role of microbial aspartic protease enzyme in food and beverage industries. Journal of Food Quality, 2018, 1–15. https://doi.org/10.1155/2018/7957269.

    Article  CAS  Google Scholar 

  9. Souza, P. M., Bittencourt, M. L. A., Caprara, C. C., Freitas, M., Almeida, R. P. C., Silveira, D., Fonseca, Y. M., Filho, E. X. F., Junior, A. P., & Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46(2), 337–346.

    Article  Google Scholar 

  10. Wanderley, M. C. A., et al. (2017). Collagenolytic enzymes produced by fungi: A systematic review. Brazilian Journal of Microbiology, 48, 13–24.

    Article  CAS  Google Scholar 

  11. Finn, R. D., et al. (2014). Pfam: The protein families database. Nucleic Acids Research, 42, 222–230.

    Article  Google Scholar 

  12. Finn, R. D., et al. (2017). InterPro in 2017 - beyond protein family and domain annotations. Nucleic Acids Research, 45, 190–199.

    Article  Google Scholar 

  13. Yin, Y., et al. (2012). dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40, 445–451.

    Article  Google Scholar 

  14. Rawlings, N. D., Barrett, A. J., & Finn, R. (2016). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 44, 343–350.

    Article  Google Scholar 

  15. The UniProt Consrtium. (2018). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 46, 2699–2699.

    Article  Google Scholar 

  16. Ashburner, M., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25, 25–29.

    Article  CAS  Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  18. Kocabiyik, S., & Ozdemir, I. (2006). Purification and characterization of an intracellular chymotrypsin-like serine protease from Thermoplasma volcanium. Bioscience, Biotechnology, and Biochemistry, 70, 126–134.

    Article  CAS  Google Scholar 

  19. Schagger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368–379.

    Article  CAS  Google Scholar 

  20. Dombkowski, A. A., Sultana, K. Z., & Craig, D. B. (2014). Protein disulfide engineering. FEBS Letters, 588, 206–212.

    Article  CAS  Google Scholar 

  21. Mansfeld, J., Vriend, G., Dijkstra, B. W., Veltman, O. R., Van den Burg, B., Venema, G., Ulbrich-Hofmann, R., & Eijsink, V. G. H. (1997). Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. The Journal of Biological Chemistry, 272(17), 11152–11156.

    Article  CAS  Google Scholar 

  22. Li, J., Chi, Z., & Wang, X. (2010). Cloning of the SAP6 gene of Metschnikowia reukaufii and its heterologous expression and characterization in Escherichia coli. Microbiological Research, 165(3), 173–182.

    Article  CAS  Google Scholar 

  23. Salgado, J. A. G., Kangwa, M., & Fernandez-Lahore, M. (2013). Cloning and expression of an aspartic proteinase from Mucor circinelloides in Pichia pastoris. BMC Microbiology, 13, 1–11.

    Article  Google Scholar 

  24. Sun, Q., Chen, F., Geng, F., Luo, Y., Gong, S., & Jiang, Z. (2018). A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation on turtle peptides. Food Chemistry, 245, 570–577.

    Article  CAS  Google Scholar 

  25. Potvin, G., Ahmad, A., & Zhang, Z. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochemical Engineering Journal, 64, 91–105.

    Article  CAS  Google Scholar 

  26. Fan, G., Katrolia, P., Jia, H., Yang, S., Yan, Q., & Jiang, Z. (2012). High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Biotechnology Letters, 34(11), 2043–2048.

    Article  CAS  Google Scholar 

  27. Yang, X., Cong, H., Song, J., & Zhang, J. (2013). Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris. World Journal of Microbiology and Biotechnology, 29, 2087–2094.

    Article  CAS  Google Scholar 

  28. Lim, L., Sebba, H., Kimura, Y., Yokota, S., Doi, M., Yoshida, K., & Takenaka, S. (2018). Influences of N-linked glycosylation on the biochemical properties of aspartic protease from Aspergillus glaucus MA0196. Process Biochemistry, 79, 74–80.

    Article  Google Scholar 

  29. Silva, R. R. (2018). Enzymatic synthesis of protein hydrolysates from animal proteins: Exploring microbial peptidases. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.00735.

  30. Kshirsagar, S. D., Saratale, G. D., Saratale, R. G. S. P., Govindwar, S. P., & Oh, M. K. (2015). An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass. Journal of Applied Microbiology, 120, 112–125.

    Article  Google Scholar 

  31. Bastawde, K. B. (1992). Xylan structure, microbial xylanases, and their mode of action. World Journal of Microbiology and Biotechnology, 8, 353–368.

    Article  CAS  Google Scholar 

  32. Guo, Y., Tu, T., Yuan, P., Wang, Y., Ren, Y., Yao, B., & Luo, H. (2019). High-level expression and characterization of a novel aspartic protease from Talaromyces leycttanus JCM12802 and its potential in juice clarification. Food Chemistry, 280, 197–203.

    Article  Google Scholar 

  33. Baskaran, G., Masdor, N. A., Syed, M. A., & Shukor, M. Y. (2013). An inhibitive enzyme assay to detect mercury and zinc using protease from Coriandrum sativum. Scientific World Journal, 2013, 1–7. https://doi.org/10.1155/2013/678356.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support provided by Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP (process 2017/14629-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto da Silva.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, W.E.S., da Silva, R.R., de Amo, G.S. et al. A Collagenolytic Aspartic Protease from Thermomucor indicae-seudaticae Expressed in Escherichia coli and Pichia pastoris. Appl Biochem Biotechnol 191, 1258–1270 (2020). https://doi.org/10.1007/s12010-020-03292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03292-z

Keywords

Navigation