Skip to main content
Log in

Improvement in Production of Rhamnolipids Using Fried Oil with Hydrophilic Co-substrate by Indigenous Pseudomonas aeruginosa NJ2 and Characterizations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Commercialization of biosurfactant remained a challenge due to lack of structural variation and economical process using low-cost materials and low productivity. Improvement in production of biosurfactant using fried oil with hydrophilic co-substrate by an indigenous strain was studied. Microbe isolated from exhaust chimney condensate was screened for utilization of mixed carbon source and then identified as Pseudomonas aeruginosa NJ2 by 16S rDNA gene sequence. FTIR, HPLC, and NMR analyses confirmed that biosurfactant was rhamnolipids. Batch fermentation using mixed substrates improved the cell growth yield to 1.48 g/L (2.34 times) and product yield to 4.28 g/L (3.4 times) with maximum specific growth rate 0.1 h−1 (two times) and specific production rate 0.5 h−1 (13 times) due to higher cell density and direct synthesis of lipid and rhamnose moieties through central metabolic pathways of the two substrates. Increase in carrying capacity and coefficient value (two times) of logistic equation confirmed the significance of mixed substrates. The biosurfactant showed excellent surface active and thermo-chemical stability properties. Economical production of biosurfactant with high yield and productivity could be possible by isolation of mixed carbon source utilizing strain and optimization of waste substrates from oil/soapstock and sugar/corn syrup industries in media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fssai. Repurpose used cooking oil. Retrieved August 30, 2019, from https://fssai.gov.in/ruco/background-note.php

  2. Murthy, A. V. N., & Sudhir, M. N. (2016). Marketing scenario of edible oil in India (marketing strength of edible oil in Andhra Pradesh). International Journal of Business and General Management (IJBGM), 5(2), 27–36 Retrieved from http://www.iaset.us/view_archives.php?year=2016&jtype=2&id=32&details=archives.

    Google Scholar 

  3. Haba, E., Espuny, M. J., Busquets, M., & Manresa, A. (2000). Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 88(3), 379–387. https://doi.org/10.1046/j.1365-2672.2000.00961.x.

    Article  CAS  PubMed  Google Scholar 

  4. De Lima, C. J. B., Ribeiro, E. J., Sérvulo, E. F. C., Resende, M. M., & Cardoso, V. L. (2009). Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Applied Biochemistry and Biotechnology, 152(1), 156–168. https://doi.org/10.1007/s12010-008-8188-1.

    Article  CAS  PubMed  Google Scholar 

  5. Maddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2015). Improved synthesis of sophorolipids from waste cooking oil using fed batch approach in the presence of ultrasound. Chemical Engineering Journal, 263, 479–487. https://doi.org/10.1016/j.cej.2014.11.010.

    Article  CAS  Google Scholar 

  6. Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., & Reis, M. A. M. (2017). Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering, 4(2), 55. https://doi.org/10.3390/bioengineering4020055.

    Article  CAS  PubMed Central  Google Scholar 

  7. Abed, K. A., El Morsi, A. K., Sayed, M. M., Shaib, A. A. E., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum, 27(4), 985–989. https://doi.org/10.1016/j.ejpe.2018.02.008.

    Article  Google Scholar 

  8. Dubey, K. V., Charde, P. N., Meshram, S. U., Shendre, L. P., Dubey, V. S., & Juwarkar, A. A. (2012). Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions. Bioresource Technology, 126, 368–374. https://doi.org/10.1016/j.biortech.2012.05.024.

    Article  CAS  PubMed  Google Scholar 

  9. Joy, S., Rahman, P. K. S. M., Khare, S. K., & Sharma, S. (2019). Production and characterization of glycolipid biosurfactant from Achromobacter sp. (PS1) isolate using one-factor-at-a-time (OFAT) approach with feasible utilization of ammonia-soaked lignocellulosic pretreated residues. Bioprocess and Biosystems Engineering, 42(8), 1301–1315. https://doi.org/10.1007/s00449-019-02128-3.

    Article  CAS  PubMed  Google Scholar 

  10. Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 1–31. https://doi.org/10.3390/ijms17030401.

  11. Juwarkar, A. A., Dubey, K. V., Nair, A., & Kumar, S. (2008). Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian Journal of Microbiology, 48(1), 142–146.

    Article  CAS  Google Scholar 

  12. Abdel-Mawgoud, A. M., Hausmann, R., Lépine, F., Müller, M. M., & Déziel, E. (2011). Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. Microbiology Monographs, 20, 13–55. https://doi.org/10.1007/978-3-642-14490-5_2.

    Article  Google Scholar 

  13. Hultberg, M., Bengtsson, T., & Liljeroth, E. (2010). Late blight on potato is suppressed by the biosurfactant-producing strain Pseudomonas koreensis 2.74 and its biosurfactant. BioControl, 55(4), 543–550. https://doi.org/10.1007/s10526-010-9289-7.

    Article  CAS  Google Scholar 

  14. Suthar, H., & Nerurkar, A. (2016). Characterization of biosurfactant produced by Bacillus licheniformis TT42 having potential for enhanced oil recovery. Applied Biochemistry and Biotechnology, 180(2), 248–260. https://doi.org/10.1007/s12010-016-2096-6.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma, R., Singh, J., & Verma, N. (2018). Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery. 3 Biotech, 8(1). https://doi.org/10.1007/s13205-017-1022-0.

  16. Dehghan-Noudeh, G., Housaindokht, M., & Bazzaz, B. S. F. (2005). Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. Journal of Microbiology, 43(3), 272–276.

    Google Scholar 

  17. Janek, T., Łukaszewicz, M., Rezanka, T., & Krasowska, A. (2010). Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic archipelago of Svalbard. Bioresource Technology, 101(15), 6118–6123. https://doi.org/10.1016/j.biortech.2010.02.109.

    Article  CAS  PubMed  Google Scholar 

  18. Varjani, S. J., & Upasani, V. N. (2016). Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant. Bioresource Technology, 221, 510–516. https://doi.org/10.1016/j.biortech.2016.09.080.

    Article  CAS  PubMed  Google Scholar 

  19. Lan, G., Fan, Q., Liu, Y., Liu, Y., Liu, Y., Yin, X., & Luo, M. (2015). Effects of the addition of waste cooking oil on heavy crude oil biodegradation and microbial enhanced oil recovery using Pseudomonas sp. SWP-4. Biochemical Engineering Journal, 103, 219–226. https://doi.org/10.1016/j.bej.2015.08.004.

    Article  CAS  Google Scholar 

  20. Shah, V., Jurjevic, M., & Badia, D. (2007). Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnology Progress, 23(2), 512–515. https://doi.org/10.1021/bp0602909.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H. S., Jeon, J. W., Kim, B. H., Ahn, C. Y., Oh, H. M., & Yoon, B. D. (2006). Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Applied Microbiology and Biotechnology, 70(4), 391–396. https://doi.org/10.1007/s00253-005-0092-9.

    Article  CAS  PubMed  Google Scholar 

  22. Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 285, 198–204. https://doi.org/10.1016/j.desal.2011.10.002.

    Article  CAS  Google Scholar 

  23. Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., & Nabi, A. (2008). Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 223(1–3), 143–151. https://doi.org/10.1016/j.desal.2007.01.198.

    Article  CAS  Google Scholar 

  24. Patowary, R., Patowary, K., Kalita, M. C., & Deka, S. (2016). Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant. Applied Biochemistry and Biotechnology, 180(3), 383–399. https://doi.org/10.1007/s12010-016-2105-9.

    Article  CAS  PubMed  Google Scholar 

  25. Wei, Y. H., Chou, C. L., & Chang, J. S. (2005). Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical Engineering Journal, 27(2), 146–154. https://doi.org/10.1016/j.bej.2005.08.028.

    Article  CAS  Google Scholar 

  26. Wu, J. Y., Yeh, K. L., Lu, W. B., Lin, C. L., & Chang, J. S. (2008). Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology, 99(5), 1157–1164. https://doi.org/10.1016/j.biortech.2007.02.026.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, L., Veres-Schalnat, T. A., Somogyi, A., Pemberton, J. E., & Maiera, R. M. (2012). Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays. Applied and Environmental Microbiology, 78(24), 8611–8622. https://doi.org/10.1128/AEM.02111-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan, Y. N., & Li, Q. (2018). Microbial production of rhamnolipids using sugars as carbon sources. Microbial Cell Factories, 17(1). https://doi.org/10.1186/s12934-018-0938-3.

  29. Garrity, G. M. & Searles, D. B. (2001). Taxonomic Outline of the Procaryotic Genera: Bergey’s Manual of Systematic Bacteriology, Second Edition, Springer, New York. https://doi.org/10.1007/978-0-387-21609-6

  30. Muyzer, G., Teske, A., Wirsen, C. O., & Jannasch, H. W. (1995). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Archives of Microbiology, 164(3), 165–172. https://doi.org/10.1007/BF02529967.

    Article  CAS  PubMed  Google Scholar 

  31. Inka, S., & Fritz, W. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnology Techniques, 5(4), 265–268.

    Article  Google Scholar 

  32. Thomas, P. (1977). Methods in carbohydrate chemistry. Carbohydrate research (vol. III., Vol. 56). NY: Academic Press. https://doi.org/10.1016/s0008-6215(00)84261-5.

    Book  Google Scholar 

  33. Benincasa, M., Contiero, J., Manresa, M. A., & Moraes, I. O. (2002). Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 54, 283–288.

    Article  Google Scholar 

  34. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  35. Lotfabad, T. B., Abassi, H., Ahmad Khaniha, R., Roostaazad, R., Masoomi, F., Zahiri, H. S., & Noghabi, K. A. (2010). Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids and Surfaces B: Biointerfaces, 81(2), 397–405. https://doi.org/10.1016/j.colsurfb.2010.06.026.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, X., Wang, K., Zhu, J., & Koga, M. (2001). Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 49(10), 4790–4794. https://doi.org/10.1021/jf001084y.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, X., Zhu, S., Wu, Y., & Huai, H. (2009). The effects of cooking oil fume condensates (COFCs) on the vegetative growth of Salvinia natans (L.) All. Journal of Hazardous Materials, 172(1), 240–246. https://doi.org/10.1016/j.jhazmat.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  38. Da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27(1), 30–39. https://doi.org/10.1016/j.biotechadv.2008.07.006.

    Article  CAS  PubMed  Google Scholar 

  39. Docoslis, A., Giese, R. F., & Van Oss, C. J. (2000). Influence of the water-air interface on the apparent surface tension of aqueous solutions of hydrophilic solutes. Colloids and Surfaces B: Biointerfaces, 19(2), 147–162. https://doi.org/10.1016/S0927-7765(00)00137-5.

    Article  CAS  Google Scholar 

  40. Shogren, R., & Biresaw, G. (2007). Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(3), 170–176. https://doi.org/10.1016/j.colsurfa.2006.10.070.

    Article  CAS  Google Scholar 

  41. Takamura, K., Fischer, H., & Morrow, N. R. (2012). Physical properties of aqueous glycerol solutions. Journal of Petroleum Science and Engineering, 98–99, 50–60. https://doi.org/10.1016/j.petrol.2012.09.003.

    Article  CAS  Google Scholar 

  42. Hasegawa, M., Kishino, H., Yano, & Aki, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174. https://doi.org/10.1007/BF02101694.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidberger, A., Henkel, M., Hausmann, R., & Schwartz, T. (2013). Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Applied Microbiology and Biotechnology, 97(13), 5779–5791. https://doi.org/10.1007/s00253-013-4891-0.

    Article  CAS  PubMed  Google Scholar 

  44. Reis, R. S., Pereira, A. G., Neves, B. C., & Freire, D. M. G. (2011). Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresource Technology, 102(11), 6377–6384. https://doi.org/10.1016/j.biortech.2011.03.074.

    Article  CAS  PubMed  Google Scholar 

  45. Churchill, M. E., & Chen, L. (2011). Structural basis of acyl-homoserine lactone-dependent signaling. Chemical Reviews, 111(1), 68–85. https://doi.org/10.1021/cr1000817.

    Article  CAS  PubMed  Google Scholar 

  46. Maier, R. M., & Sobero, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 54(5), 625–633.

    Article  CAS  Google Scholar 

  47. Lotfabad, T. B., Shourian, M., Roostaazad, R., Najafabadi, A. R., Adelzadeh, M. R., & Noghabi, K. A. (2009). An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids and Surfaces B: Biointerfaces, 69(2), 183–193. https://doi.org/10.1016/j.colsurfb.2008.11.018.

    Article  CAS  PubMed  Google Scholar 

  48. Dusane, D. H., Zinjarde, S. S., Venugopalan, V. P., McLean, R. J. C., Weber, M. M., & Rahman, P. K. S. M. (2010). Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnology and Genetic Engineering Reviews, 27(1), 159–184. https://doi.org/10.1080/02648725.2010.10648149.

    Article  CAS  PubMed  Google Scholar 

  49. Schuster, M., Lostroh, C. P., Ogi, T., & Greenberg, E. P. (2003). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. Journal of Bacteriology, 185(7), 2066–2079. https://doi.org/10.1128/JB.185.7.2066-2079.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shuler, M. L., & Kargi, F. (1992). Bioprocess engineering: basic concepts. Journal of Controlled Release (Vol. 22). Englewood Cliffs: Prentice Hall International. https://doi.org/10.1016/0168-3659(92)90106-2.

    Book  Google Scholar 

  51. Ashby, R. D., Solaiman, D. K. Y., Foglia, T. A., & Liu, C. K. (2001). Glucose/lipid mixed substrates as a means of controlling the properties of medium chain length poly(hydroxyalkanoates). Biomacromolecules, 2(1), 211–216. https://doi.org/10.1021/bm000098+.

    Article  CAS  PubMed  Google Scholar 

  52. Sharma, P. K., Munir, R. I., de Kievit, T., & Levin, D. B. (2017). Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Canadian Journal of Microbiology, 63(12), 1009–1024. https://doi.org/10.1139/cjm-2017-0412.

    Article  CAS  PubMed  Google Scholar 

  53. Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2005). Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnology Progress, 21(6), 1593–1600. https://doi.org/10.1021/bp050239p.

    Article  CAS  PubMed  Google Scholar 

  54. Campos, J. M., Montenegro Stamford, T. L., Sarubbo, L. A., de Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29(5), 1097–1108. https://doi.org/10.1002/btpr.1796.

    Article  CAS  PubMed  Google Scholar 

  55. Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A. H. (2009). Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Applied Biochemistry and Biotechnology, 157(2), 329–345. https://doi.org/10.1007/s12010-008-8285-1.

    Article  CAS  PubMed  Google Scholar 

  56. Kim, H. S., Yoon, B. D., Lee, C. H., Suh, H. H., Oh, H. M., Katsuragi, T., & Tani, Y. (1997). Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. Journal of Fermentation and Bioengineering, 84(1), 41–46. https://doi.org/10.1016/S0922-338X(97)82784-5.

    Article  Google Scholar 

Download references

Acknowledgments

Mr. Arun Singh Pathania gratefully acknowledges the Ministry of Human Resource Development (MHRD), Govt. of India, for providing the fellowship during the study. All authors are highly thankful to Dr. B R A, National Institute of Technology (NIT), Jalandhar, for the administrative supports of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Kumar Jana.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, A.S., Jana, A.K. Improvement in Production of Rhamnolipids Using Fried Oil with Hydrophilic Co-substrate by Indigenous Pseudomonas aeruginosa NJ2 and Characterizations. Appl Biochem Biotechnol 191, 1223–1246 (2020). https://doi.org/10.1007/s12010-019-03221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03221-9

Keywords

Navigation