Skip to main content
Log in

Enantioselective Resolution of (R, S)-2-Phenoxy-Propionic Acid Methyl Ester by Covalent Immobilized Lipase from Aspergillus oryzae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

(R)-2-Phenoxy-propionic acid methyl ester (PPAM) is an important chiral precursor of aryloxy phenoxy propionate herbicides. The covalent immobilization of lipase from Aspergillus oryzae WZ007 and the catalysis of enantioselective (R, S)-PPAM resolution by the immobilized A. oryzae lipase (AOL) were investigated in this study. The primary amino resin LX-1000HA was selected as the support for the covalent immobilization of AOL. The Km and Vmax of the immobilized lipase were 1.97 mM and 4.84 × 103 μmol/mg min, respectively. The key reaction parameters (pH, temperature, rotation speed, and substrate concentration) for the lipase-catalyzed resolution of (R, S)-PPAM were optimized. An e.e.s of 99.5% and conversion rate of 50.8% were achieved under the optimal conditions of pH 7.5, 30 °C, and substrate concentration 500 mM. The immobilized lipase retained 87.3% of its initial activity after 15 cycles of the repeated experiments. The results demonstrated that the covalent immobilized AOL has potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166(2), 486–520.

    Article  CAS  Google Scholar 

  2. Facin, B. R., Valério, A., Bresolin, D., Centenaro, G., de Oliveira, D., & Oliveira, J. V. (2018). Improving reuse cycles of Thermomyces lanuginosus lipase (NS-40116) by immobilization in flexible polyurethane. Biocatalysis and Biotransformation, 36(5), 1–9.

    Article  Google Scholar 

  3. Oliveira, P. C. D., Alves, G. M., & Castro, H. F. D. (2000). Immobilisation studies and catalytic properties of microbial lipase onto styrene-divinylbenzene copolymer. Biochemical Engineering Journal, 5(1), 63–71.

    Article  Google Scholar 

  4. Kanmani, P., Aravind, J., & Kumaresan, K. (2015). An insight into microbial lipases and their environmental facet. International journal of Environmental Science and Technology, 12, 1147–1162.

    Article  CAS  Google Scholar 

  5. González-Sabı́n, J., Gotor, V., & Rebolledo, F. (2004). Kinetic resolution of (±)-trans- and (±) -cis-2-phenylcyclopentanamine by CALB-catalyzed aminolysis of esters: the key role of the leaving group. Tetrahedron: Asymmetry, 15(3), 481–488.

    Article  Google Scholar 

  6. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235–251.

    Article  CAS  Google Scholar 

  7. Cui, Y., Chen, X., Li, Y., Liu, X., Lei, L., Zhang, Y., & Qian, J. Y. (2014). Superparamagnetic polymer emulsion particles from a soap-free seeded emulsion polymerization and their application for lipase immobilization. Applied Biochemistry and Biotechnology, 172(2), 701–712.

    Article  CAS  Google Scholar 

  8. Bancerz, R. (2017). Industrial application of lipases. Postepy Biochemii, 63(4), 335–341.

    PubMed  Google Scholar 

  9. Zhang, K., Pan, Z., Diao, Z., Liang, S., Han, S., Zheng, S., & Zhang, K. (2018). Kinetic resolution of sec-alcohols catalysed by Candida antarctica lipase B displaying Pichia pastoris whole-cell biocatalyst. Enzyme and Microbial Technology, 110, 8–13.

    Article  CAS  Google Scholar 

  10. Zhang, C., Dong, X., Guo, Z., & Sun, Y. (2018). Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles. Journal of Colloid and Interface Science, 519, 145–153.

    Article  CAS  Google Scholar 

  11. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 4, 185–205.

    Article  Google Scholar 

  12. Mehdi, M., Zohreh, H., & Somayyeh, G. (2018). A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports; application for enantioselective resolution of rac-ibuprofen. International Journal of Biological Macromolecules, 117, 523–531.

    Article  Google Scholar 

  13. Mehrasbi, M. R., Mohammadi, J., Peyda, M., & Mohammadi, M. (2017). Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renewable Energy, 101, 593–602.

    Article  CAS  Google Scholar 

  14. Indu, B., Rashmi, S., Pankaj, G., & Bhahwal, A. S. (2018). Enantioselective resolution of 2-arylpropionic acid derivatives employing immobilization of lipase from Bacillus subtilis strain Kakrayal_1 (BSK-L). Bioresource Technology, 269, 581–585.

    Article  Google Scholar 

  15. Hauser, M., Qian, C., King, S. T., Kauffman, S., Naider, F., Hettich, R. L., & Becker, J. M. (2017). Identification of peptide-binding sites within BSA using rapid, laser-induced covalent cross-linking combined with high-performance mass spectrometry. Journal of Molecular Recognition, 31(2), e2680.

    Article  Google Scholar 

  16. Kinne, M., Ullrich, R., Hammel, K. E., Scheibner, K., & Hofrichter, M. (2008). Regioselective preparation of (R)-2-(4-hydroxyphenoxy) propionic acid with a fungal peroxygenase. Tetrahedron Letters, 499, 5950–5953.

    Article  Google Scholar 

  17. Yasufuku, Y., & Ueji, S. I. (1997). High temperature-induced high enantioselectivity of lipase for esterifications of 2-phenoxypropionic acids in organic solvent. Bioorganic Chemistry, 25(2), 88–99.

    Article  CAS  Google Scholar 

  18. Zheng, J. Y., Wu, J. Y., Zhang, Y. J., & Wang, Z. (2013). Resolution of (R, S)-ethyl-2- (4-hydroxyphenoxy) propanoate using lyophilized mycelium of Aspergillus oryzae WZ007. Journal of Molecular Catalysis B: Enzymatic, 97, 62–66.

    Article  CAS  Google Scholar 

  19. Zheng, J. Y., Lan, X., Li, X. J., Huang, L. J., Zhang, Y. J., & Wang, Z. (2018). High-level expression and characterization of a stereoselective lipase from Aspergillus oryzae in Pichia pastoris. Protein Expression and Purification, 155, 1–7.

    Article  Google Scholar 

  20. Rakels, J. L. L., Straathof, A. J. J., & Heijnen, J. J. (1993). A simple method to determine the enantiomeric ratio in enantioselective biocatalysis. Enzyme and Microbial Technology, 15(12), 1051–1056.

    Article  CAS  Google Scholar 

  21. Wolff, A., Zhu, L., Wong, Y. W., Straathof, A. J. J., Jongejan, J. A., & Heijnen, J. J. (1999). Understanding the influence of temperature change and cosolvent addition on conversion rate of enzymatic suspension reactions based on regime analysis. Biotechnology and Bioengineering, 62(2), 125–134.

    Article  CAS  Google Scholar 

  22. Cipiciani, A., Bellezza, F., Fringuelli, F., & Silvestrini, M. G. (2001). Influence of pH and temperature on the enantioselectivity of propan-2-ol-treated Candida rugosa lipase in the kinetic resolution of (±)-4-acetoxy-[2, 2]-paracyclophane. Tetrahedron: Asymmetry, 12(16), 2277–2281.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (no. 31600639, no. 31660247) and the Education Department of Jiangxi Province (GJJ151211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

E-supplementary data of this work can be found in online version of the paper, at https://doi.org/10.1016/.2019.00.000.

ESM 1

(DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Zhang, M., Li, X. et al. Enantioselective Resolution of (R, S)-2-Phenoxy-Propionic Acid Methyl Ester by Covalent Immobilized Lipase from Aspergillus oryzae. Appl Biochem Biotechnol 190, 1049–1059 (2020). https://doi.org/10.1007/s12010-019-03145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03145-4

Keywords

Navigation