Skip to main content
Log in

Characteristics of White-rot Fungus Phlebia brevispora TMIC33929 and Its Growth-Promoting Bacterium Enterobacter sp. TN3W-14 in the Decolorization of Dye-Contaminated Water

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The dye decolorization potential of the white-rot fungus Phlebia brevispora TMIC33929 when grown alone or in coculture with its growth-promoting bacterium Enterobacter sp. TN3W-14 was evaluated in low nitrogen liquid medium at different pHs. Axenic fungus removed a similar amount of Congo red and crystal violet at pH 4.5 and 7.0, respectively. The bacterium alone achieved only slightly better decolorization of crystal violet than the fungus at pH 9.0. Compared with axenic fungus, cocultures provided no increased crystal violet removal but achieved higher removal of crystal violet in mixed dye at all pHs, and the best-mixed dye decolorization at pH 9.0. Unlike bacterial growth on dyes, growth of fungal mycelia was not inhibited by the dyes at all pH but the cocultures gave comparably higher mycelial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin, X. C., Liu, G. Q., Xu, Z. H., & Tao, W. Y. (2007). Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Applied Microbiology and Biotechnology, 74(1), 239–243.

    Article  CAS  PubMed  Google Scholar 

  2. Nozaki, K., Beh, H. C., Mizuno, M., Isobe, T., Shiroishi, M., Kanda, T., & Amano, Y. (2008). Screening and investigation of dye decolorization activities of Basidiomycetes. Journal of Bioscience and Bioengineering, 105(1), 69–72.

    Article  CAS  PubMed  Google Scholar 

  3. Reife, A., & Othmer, K. (1993). Encyclopedia of chemical technology (Vol. 8, 4th ed.). New York: Wiley.

    Google Scholar 

  4. Cripps, C., Bumpus, J. A., & Aust, S. D. (1990). Biodegradation of azo dyes by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 56(4), 1114–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Woo, S. W., Cho, J. S., Hur, B. K., Shin, D. H., Ryu, K. G., & Kim, E. K. (2003). Hydrogen peroxide, its measurement and effect during enzymatic decoloring of Congo red. Journal of Microbiology and Biotechnology, 13, 773–777.

    CAS  Google Scholar 

  6. Klaus, H., Peter, M., Wolfgang, R., Roderich, R. K., & Kunde, A. E. (2005). Azo dyes. In Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  7. Littlefield, N. A., Blackwell, B. N., Hewitt, C. C., & Gaylor, D. W. (1985). Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundamental and Applied Toxicology, 5(5), 902–912.

    Article  CAS  PubMed  Google Scholar 

  8. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157.

    Article  CAS  Google Scholar 

  9. Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration and Biodegradation, 59(2), 73–84.

    Article  CAS  Google Scholar 

  10. Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56(1-2), 69–80.

    Article  CAS  PubMed  Google Scholar 

  11. Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining eluents: a review. Bioresource Technology, 58(3), 217–227.

    Article  CAS  Google Scholar 

  12. Slokar, Y. M., & Le Marechal, A. M. (1998). Methods of decoloration of textile wastewaters. Dyes and Pigments, 37(4), 335–356.

    Article  CAS  Google Scholar 

  13. Franciscon, E., Zille, A., Garboggini, F. F., Silva, I. S., Paulo, A. C., & Durrant, L. R. (2009). Microaerophilic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochemistry, 44(4), 446–452.

    Article  CAS  Google Scholar 

  14. Kalyani, D. C., Telke, A. A., Dhanve, R. S., & Jadhav, J. P. (2008). Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 163(2-3), 735–742.

    Article  PubMed  Google Scholar 

  15. Knapp, J. S., Vantoch-Wood, E. J., & Zhang, F. (2001). In G. M. Gadd (Ed.), Fungi in bioremediation. Cambidge: Cambidge University Press.

    Google Scholar 

  16. Rajaguru, P., Kalaiselvi, K., Palanivel, M., & Subburam, V. (2000). Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Applied Microbiology and Biotechnology, 54(2), 268–273.

    Article  CAS  PubMed  Google Scholar 

  17. Panswad, T., Iamsamer, K., & Anotai, J. (2001). Decolorization of azo-reactive dye by polyphosphate- and glycogen-accomulating organisms in an anaerobic-aerobic sequencing batch reactor. Bioresource Technology, 76(2), 151–159.

    Article  CAS  PubMed  Google Scholar 

  18. Chang, J. S., Chou, C., & Chen, S. Y. (2001). Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry, 36(8-9), 757–763.

    Article  CAS  Google Scholar 

  19. Lourenco, N. D., Novais, J. M., & Pinheiro, H. M. (2001). Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. Journal of Biotechnology, 89(2-3), 163–174.

    Article  CAS  PubMed  Google Scholar 

  20. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I. M., Marchant, R., & Smyth, W. F. (2001). Microbial decolorization and degradation of textile dyes. Applied Microbiology and Biotechnology, 56(1-2), 81–87.

    Article  CAS  PubMed  Google Scholar 

  21. Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57(1-2), 20–33.

    Article  CAS  PubMed  Google Scholar 

  22. Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Artur, C. P., & Gubitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology, 66(8), 3357–3362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borchert, M., & Libra, J. A. (2001). Decolorization of reactive dyes by the white-rot fungus Trametes versicolor in sequencing batch reactors. Biotechnology Bioengineering, 75(3), 313–321.

    Article  CAS  PubMed  Google Scholar 

  24. Harry-asobara, J. L., & Kamei, I. (2018). Bacterial strains isolated from Cedar wood improve the mycelial growth and morphology of white rot fungus Phlebia brevispora on agar and liquid medium. Journal of Wood Science, 64(4), 444–450.

    Article  CAS  Google Scholar 

  25. Kamei, I., Sonoki, S., Haraguchi, K., & Kondo, R. (2006). Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus Phlebia. brevispora. Applied Microbiology and Biotechnology, 73(4), 932–940.

    Article  CAS  PubMed  Google Scholar 

  26. Kamei, I., Suhara, H., & Kondo, R. (2005). Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Applied Microbiology and Biotechnology, 69(3), 358–366.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao, P., Mori, T., Kamei, I., & Kondo, R. (2011). Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi belonging to genus Phlebia. FEMS Microbiology Letters, 314(2), 140–146.

    Article  CAS  PubMed  Google Scholar 

  28. Kirk, T. K., Yang, H. H., & Keyser, P. (1977). The chemistry and physiology of the fungal degradation of lignin. Journal of Industrial Microbiology, 19, 51–61.

    CAS  Google Scholar 

  29. Anliker, R. (1979). Ecotoxicology of dyestuffs-a joint effort by industry. Ecotoxicology and Environmental Safety, 3(1), 59–74.

    Article  CAS  PubMed  Google Scholar 

  30. Michaels, G. B., & Lewis, D. L. (1986). Microbial transformation rates of AZO and triphenylmethane dyes. Environmental Toxicology and Chemistry, 5(2), 161–166.

    Article  CAS  Google Scholar 

  31. Zimmerinan, T., Kulla, H. G., & Leisinger, T. (1982). Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. European Journal of Biochemistry, 129(1), 197–203.

    Article  Google Scholar 

  32. Singh, R. P., Singh, P. K., & Singh, R. L. (2014). Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicology International, 21(2), 160–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rani, B., Kumar, V., Singh, J., Bisht, S., Teotia, P., Sharma, S., & Ritu, K. (2014). Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Brazilian Journal of Microbiology, 45(3), 1055–6310.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vasdev, K. (2011). Decolorization of triphenylmethane dyes by six white-rot fungi isolated from nature. Journal of Bioremediation and Biodegradation, 2(05), 128. https://doi.org/10.4172/2155-6199.1000128.

    Article  CAS  Google Scholar 

  35. Eun-Hee, P., Jang, M., Cha, I., Choi, Y., CHO, Y., Kim, C., & Lee, Y. (2005). Decolorization of a sulfonated azo dye, Congo red, by Staphylococcus sp. EY-3. Journal of Microbiology and Biotechnology, 15(1), 221–225.

    Google Scholar 

  36. Selva Raj, D., Jaisy Prabha, R., & Leena, R. (2012). Analysis of bacterial degradation of azo dye Congo red using HPLC. Journal of Industrial Pollution Control, 28(1), 57–62.

    Google Scholar 

  37. Pearce, C. I., Loyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58(3), 179–196.

    Article  CAS  Google Scholar 

  38. Yesiladal, S. K., Pekin, G., Bermek, H., Arslan-Alaton, İ., Orhon, D., & Tamerler, C. (2006). Bioremediation of textile azo dyes by Trichophyton rubrum LSK-27. World Journal of Microbiology and Biotechnology, 22(10), 1027–1031.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant no. 18H02257 and 17K19296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Kamei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harry-asobara, J.L., Kamei, I. Characteristics of White-rot Fungus Phlebia brevispora TMIC33929 and Its Growth-Promoting Bacterium Enterobacter sp. TN3W-14 in the Decolorization of Dye-Contaminated Water. Appl Biochem Biotechnol 189, 1183–1194 (2019). https://doi.org/10.1007/s12010-019-03062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03062-6

Keywords

Navigation