Skip to main content
Log in

Two-Step Bioprocess for Reducing Nucleus Degradation in Phytosterol Bioconversion by Mycobacterium neoaurum NwIB-R10hsd4A

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to obtain high 4-androstene-3,17-dione (AD) yield, nucleus degradation needs to be avoided during phytosterol bioconversion process with Mycobacterium neoaurum NwIB-R10hsd4A. 3-Ketosteroid-Δ1-dehydrogenase (KstD) catalyzes 1,2-desaturation of steroids and is a key enzyme involved in steroid nucleus oxidation. Heterogeneous expression and characterization of two KstDs (KstD2, KstD3) from M. neoaurum NwIB-R10hsd4A showed that their activities were inhibited by shifting temperature from 30 to 37 °C. However, the total activities of KstD2 and KstD3 were replenished when M. neoaurum NwIB-R10hsd4A was cultured at 37 °C because the transcription levels of kstD2 and kstD3 were upregulated 1.61- and 1.43-fold respectively compared with the cultivation at 30 °C. As the optimal temperature for cell growth was 30 °C, we developed a two-step bioprocess, cell culture at 30 °C and bioconversion with resting cells at 37 °C avoiding higher transcriptional level of kstD2 and kstD3. This process repressed the activities of KstDs, resulted in the decrease of 1,2-desaturation products, and reduced the nucleus degradation (17.6%). AD production increased to 24.7 g l−1 at higher substrate concentration (50 g l−1). These results indicated that the two-step bioprocess was potential in phytosterol biotransformation industrially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H. M., & Cabral, J. M. S. (2003). Microbial conversion of steroid compounds: recent developments. Enzyme & Microbial Technology, 32(6), 688–705.

    Article  CAS  Google Scholar 

  2. Malaviya, A., & Gomes, J. (2008). Androstenedione production by biotransformation of phytosterols. Bioresource Technology, 99(15), 6725–6737.

    Article  CAS  PubMed  Google Scholar 

  3. Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: current state and prospects. Applied Microbiology and Biotechnology, 94(6), 1423–1447.

    Article  CAS  PubMed  Google Scholar 

  4. Olivares, A., & Acevedo, F. (2011). Effect of inoculation strategies, substrate to biomass ratio and nitrogen sources on the bioconversion of wood sterols by Mycobacterium sp. World Journal of Microbiology and Biotechnology, 27(11), 2513–2520.

    Article  CAS  Google Scholar 

  5. Perez, C., Falero, A., Duc, H. L., Balcinde, Y., & Hung, B. R. (2006). A very efficient bioconversion of soybean phytosterols mixtures to androstanes by Mycobacteria. Journal of Industrial Microbiology & Biotechnology, 33(8), 719–723.

    Article  CAS  Google Scholar 

  6. Szentirmai, A. (1990). Microbial physiology of sidechain degradation of sterols. Journal of Industrial Microbiology & Biotechnology, 6(2), 101–115.

    Article  CAS  Google Scholar 

  7. Zhang, Q. Y., Ren, Y., He, J. Z., Cheng, S. J., Yuan, J. D., Ge, F. L., Li, W., Zhang, Y., & Xie, G. (2015). Multiplicity of 3-ketosteroid Δ1-dehydrogenase enzymes in Gordonia neofelifaecis NRRL B-59395 with preferences for different steroids. Annals of Microbiology, 65(4), 1961–1971.

    Article  CAS  Google Scholar 

  8. Bragin, E. Y., Shtratnikova, V. Y., Dovbny, D. V., Schelkunov, M. I., Pekov, Y. A., Malakho, S. G., Egorova, O. V., Ivashina, T. V., Sokolov, S. L., Ashapkin, V. V., & Donova, M. V. (2013). Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. Journal of Steroid Biochemistry & Molecular Biology, 138, 41–53.

    Article  CAS  Google Scholar 

  9. Gulla, V., Banerjee, T., & Patil, S. (2010). Bioconversion of soysterols to androstenedione by Mycobacterium fortuitum subsp. fortuitum NCIM 5239, a mutant derived from total sterol degrader strain. Journal of Chemical Technology and Biotechnology, 85(8), 1135–1141.

    Article  CAS  Google Scholar 

  10. Wei, W., Wang, F. Q., Fan, S. Y., & Wei, D. Z. (2010). Inactivation and augmentation of the primary 3-ketosteroid-Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene-3,17-dione or 1,4-androstadiene-3,17-dione. Applied and Environmental Microbiology, 76(13), 4578–4582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao, K., Xu, L. Q., Wang, F. Q., & Wei, D. Z. (2014). Characterization and engineering of 3-ketosteroid-Δ1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3, 17-dione through the catabolism of sterols. Metabolic Engineering, 24, 181–191.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, L. Q., Liu, Y. J., Yao, K., Liu, H. H., Tao, X. Y., Wang, F. Q., & Wei, D. Z. (2016). Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Scientific Reports, 6(1), 21928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, X. W., Gao, X. Q., Feng, J. X., Wang, X. D., & Wei, D. Z. (2015). Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp. Letters in Applied Microbiology, 61(1), 63–68.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, X. Q., Feng, J. X., Wang, X. D., Hua, Q., & Wei, D. Z. (2015). Enhanced steroid metabolites production by resting cell phytosterol bioconversion. Chemical and Biochemical Engineering Quarterly, 29(4), 567–573.

    Article  CAS  Google Scholar 

  15. Wang, Z. L., Zhao, F. S., Chen, D. J., & Li, D. T. (2006). Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochemistry, 41(3), 557–561.

    Article  CAS  Google Scholar 

  16. Casabon, I., Zhu, S. H., Otani, H., Liu, J., Mohn, W. W., & Eltis, L. D. (2013). Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite. Molecular Microbiology, 89(6), 1201–1212.

    Article  CAS  PubMed  Google Scholar 

  17. Shtratnikova, V. Y., Schelkunov, M. I., Dovbnya, D. V., Eugeny, Y., Bragin, E. Y., & Donova, M. V. (2017). Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol. Applied Microbiology and Biotechnology, 101(11), 4659–4667.

    Article  CAS  PubMed  Google Scholar 

  18. Andryushina, V. A., Rodina, N. V., Stytsenko, T. S., Huy, L., Druzhinina, A. V., Yaderetz, V. V., & Voishvillo, N. E. (2011). Conversion of soybean sterols into 3,17-diketosteroids using actinobacteria Mycobacterium neoaurum, Pimelobacter simplex, and Rhodococcus erythropolis. Applied Biochemistry and Microbiology, 47(3), 270–273.

    Article  CAS  Google Scholar 

  19. Carvalho, F., Marques, M. P. C., de Carvalho, C. C. C. R., Cabral, J. M. S., & Fernandes, P. (2009). Sitosterol bioconversion with resting cells in liquid polymer based systems. Bioresource Technology, 100(17), 4050–4053.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X. Y., Peng, Y., Su, Z. R., Chen, Q. H., Rua, H., & He, G. Q. (2013). Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08. Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 14(2), 132–143.

    Article  CAS  Google Scholar 

  21. Mancilla, R. A., Little, C., & Amoroso, A. (2017). Efficient bioconversion of high concentration phytosterol microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805. Applied Biochemistry and Biotechnology, 4, 1–13.

    Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 21276083, 31570079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

A SDS-PAGE analysis of KstDs in induced E. coli BL21(DE3). Lane 1: Marker; Lane2: KstD2, supernatant of cell lysate; Lane 3: KstD2 sediment of cell lysate; Lane 4: KstD3, supernatant of cell lysate; Lane 5: KstD3, sediment of cell lysate (PNG 182 kb)

High Resolution (TIF 2693 kb)

Fig. S2

Determination of total KstDs apparent activities of Mycobacterium when cell culture was at 30 °C (■) and 37 °C (●). Consumption of AD (a) and production of ADD (b). The biotransformation were carried out in a reaction system containing 20 g l−1 cell pellets cultured at 30 °C or 37 °C, 2 g l−1 AD and 8 g l−1 HP-β-CD in 10 ml phosphate buffer (20 mmol l−1, pH 8.0) at 30 °C, with a rotary speed of 200 rpm, in a 250-ml flask. The apparent KstDs activities were determined by quantifying the amount of ADD formed in the reaction. The error bars represent mean ± SD (n = 3). (PNG 112 kb)

High Resolution (TIFF 20350 kb)

Fig. S3

(PNG 107 kb)

High Resolution (TIFF 20688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hua, C., Xu, X. et al. Two-Step Bioprocess for Reducing Nucleus Degradation in Phytosterol Bioconversion by Mycobacterium neoaurum NwIB-R10hsd4A. Appl Biochem Biotechnol 188, 138–146 (2019). https://doi.org/10.1007/s12010-018-2895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2895-z

Keywords

Navigation