Skip to main content
Log in

A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa1 = 3.56 ± 0.07 and pKa1 = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa2 = 8.58 ± 0.12 and pKa2 = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, H., Liu, G., Zhang, J., & Bao, J. (2016). Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis. Bioresource Technology, 219, 123–131.

    Article  CAS  Google Scholar 

  2. Zhou, X., Xu, Y., & Yu, S. (2016). Simultaneous bioconversion of xylose and glycerol to xylonic acid and 1,3-dihydroxyacetone from the mixture of pre-hydrolysates and ethanol-fermented waste liquid by Gluconobacter oxydans. Applied Biochemistry and Biotechnology, 178, 1–8.

    Article  Google Scholar 

  3. Niu, W., Molefe, M. N., & Frost, J. W. (2003). Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. Journal of the American Chemical Society, 125, 12998–12999.

    Article  CAS  Google Scholar 

  4. Chun, B. W., Dair, B., Macuch, P. J., Wiebe, D., Porteneuve, C., & Jeknavorian, A. (2006). The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Applied Biochemistry and Biotechnology, 131, 645–658.

    Article  Google Scholar 

  5. Teglia, C. M., Brasca, R., Vera-Candioti, L., & Goicoechea, H. C. (2016). A novel approach based on capillary electrophoresis coupled to augmented multivariate curve resolution-alternating least-squares modeling for the determination of pKa of 2-hydroxy-4,6-dimethylpyrimidine in nicarbazin. Chemometrics and Intelligent Laboratory Systems, 150, 1–8.

    Article  CAS  Google Scholar 

  6. Settimo, L., Bellman, K., & Knegtel, R. M. A. (2014). Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharmaceutical Research, 31, 1082–1095.

    Article  CAS  Google Scholar 

  7. Zhang, Z., Gibson, P., Clark, S. B., Tian, G., Zanonato, P. L., & Rao, L. (2007). Lactonization and protonation of gluconic acid: a thermodynamic and kinetic study by potentiometry, NMR and ESI-MS. Journal of Solution Chemistry, 36, 1187–1200.

    Article  CAS  Google Scholar 

  8. Hummel, M., Leppikallio, M., Heikkinen, S., Niemel, K., & Sixta, H. (2010). Acidity and lactonization of xylonic acid: a nuclear magnetic resonance study. Journal of Carbohydrate Chemistry, 29, 416–428.

    Article  CAS  Google Scholar 

  9. Yu, K., Kumar, N., Aho, A., Roine, J., Heinmaa, I., Murzin, D. Y., & Ivaska, A. (2016). Determination of acid sites in porous aluminosilicate solid catalysts for aqueous phase reactions using potentiometric titration method. Journal of Catalysis, 335, 117–124.

    Article  CAS  Google Scholar 

  10. Xu, B., Wang, X., & Zhang, R. (2015). Improvement of data processing in determination of acetic acid ionization constant. Laboratory Science, 18, 15–18.

    Google Scholar 

  11. Motekaitis, R. J., & Martell, A. E. (1984). Complexes of aluminum (III) with hydroxy carboxylic acids. Inorganic Chemistry, 23, 18–23.

    Article  CAS  Google Scholar 

  12. Sajadi, S. A. A. (2012). Glycine and L-tryptophan, a comparative investigation on interactions in Cu(II) binary and ternary complexes in aqueous solution. American Journal of Biochemistry, 2, 36–40.

    Article  CAS  Google Scholar 

  13. Hagberg, J., Duker, A., & Karlsson, S. (2002). Determination of dissociation constants of low molecular weight organic acids by capillary zone electrophoresis and indirect UV detection. Chromatographia, 56, 641–644.

    Article  CAS  Google Scholar 

  14. Greschonig, H., & Glatter, O. (1986). Determination of equivalence points of sigmoidal potentiometric titration curves. Microchimica Acta, 89, 401–409.

    Article  Google Scholar 

  15. Kanicky, J. R., Poniatowski, A. F., Mehta, N. R., & Shah, D. O. (2000). Cooperativity among molecules at interfaces in relation to various technological processes: effect of chain length on the pKa of fatty acid salt solutions. Langmuir, 16, 172–177.

    Article  CAS  Google Scholar 

  16. Gran, G. (1952). Determination of the equivalence point in potentiometric titrations. Part II. The Analyst, 77, 661–671.

    Article  CAS  Google Scholar 

  17. Ivaska, A. (1973). Potentiometric titration of weak acids. Analytical Letters, 6, 961–967.

    Article  Google Scholar 

  18. Liao, C., & Nicklaus, M. C. (2009). Comparison of nine programs predicting pK(a) values of pharmaceutical substances. Journal of Chemical Information and Modeling, 49, 2801–2812.

    Article  CAS  Google Scholar 

  19. Meyer, A., Hoeffler, S., & Fischer, K. (2007). Anion-exchange chromatography-electrospray ionization mass spectrometry method development for the environmental analysis of aliphatic polyhydroxy carboxylic acids. Journal of Chromatography A, 1170, 62–72.

    Article  CAS  Google Scholar 

  20. Partanen, J. I., Juusola, P. M., & Minkkinen, P. O. (2003). Determination of stoichiometric dissociation constants of lactic acid in aqueous salt solutions at 291.15 and at 298.15 K. Fluid Phase Equilibria, 204, 245–266.

    Article  CAS  Google Scholar 

  21. Chen, Y. D., Wang, T., Helmy, R., Zhou, G. X., & LoBrutto, R. (2002). Concentration determination of methyl magnesium chloride and other Grignard reagents by potentiometric titration with in-line characterization of reaction species by FTIR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 29, 393–404.

    Article  CAS  Google Scholar 

  22. Silva, A. M. N., Kong, X., & Hider, R. C. (2009). Determination of the pKa value of the hydroxyl group in the α-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems. Biometals, 22, 771–778.

    Article  CAS  Google Scholar 

  23. Cho, H., Rai, D., Hess, N. J., Xia, Y. X., & Rao, L. F. (2003). Acidity and structure of isosaccharinate in aqueous solution: a nuclear magnetic resonance study. Journal of Solution Chemistry, 32, 691–702.

    Article  CAS  Google Scholar 

  24. Matzapetakis, M., Karligiano, N., Bino, A., Dakanali, M., Raptopoulou, C. P., Tangoulis, V., Terzis, A., Giapintzakis, J., & Salifoglou, A. (2000). Manganese citrate chemistry: Syntheses, spectroscopic studies, and structural characterizations of novel mononuclear, water-soluble manganese citrate complexes. Inorganic Chemistry, 39, 4044–4051.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31370573), the Development Program of Jiangsu (BE2015758), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institution and the Doctorate Fellowship Foundation of Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Xu, Y., Lu, W. et al. A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration. Appl Biochem Biotechnol 183, 1426–1438 (2017). https://doi.org/10.1007/s12010-017-2509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2509-1

Keywords

Navigation