Skip to main content
Log in

Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Simultaneous bioconversion of xylose and glycerol to xylonic acid and 1,3-dihydroxyacetone (DHA) was realized by using Gluconobacter oxydans (G. oxydans). Currently, the enzymatic hydrolysate to ethanol-fermented waste liquid and the inorganic acid pre-hydrolysate that contain abundant glycerol and xylose were difficult to be utilized or disposed. Based on the method of compressed oxygen supply-sealed and stirred tank reactor system (COS-SSTR), the xylonic acid and 1,3-dihydroxyacetone could be co-produced rapidly with the mixture of the dilute sulfuric acid pre-hydrolysate and ethanol-fermented waste liquid of enzymatic hydrolysate (MPEW) as material. By means of the system, we finally produced 102.3 ± 3.2 g/L xylonic acid and 40.6 ± 1.8 g/L 1,3-dihydroxyacetone at yield of 92.4 ± 2.8 % and 80.6 ± 3.5 % directly and simultaneously from the mixed solution. The central features of this bioprocess application would enable cost-competitive bacterial xylonic acid and 1,3-dihydroxyacetone production from lignocellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: a review. Renewable and Sustainable Energy Reviews, 41, 550–567.

    Article  CAS  Google Scholar 

  2. Nevoigt, E., & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 21, 231–241.

    Article  CAS  Google Scholar 

  3. Lau, M. W., Gunawan, C., Balan, V., & Dale, B. E. (2010). Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnology for Biofuels, 3, 1–10.

    Article  Google Scholar 

  4. Olsson, L., & Nielsen, J. (2000). The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme and Microbial Technology, 26, 785–792.

    Article  CAS  Google Scholar 

  5. Zheng, M., & Zhang, S. (2011). Immobilization of glycerol dehydrogenase on magnetic silica nanoparticles for conversion of glycerol to value-added 1,3-dihydroxyacetone. Biocatalysis and Biotransformation, 29, 278–287.

    CAS  Google Scholar 

  6. Suga, Y., Ikejima, A., Matsuba, S., & Ogawa, H. (2002). Medical pearl: DHA application for camouflaging segmental vitiligo and piebald lesions. Journal of the American Academy of Dermatology, 47, 436–438.

    Article  Google Scholar 

  7. Enders, D., Voith, M., & Lenzen, A., 2005. The dihydroxyacetone unit—a versatile C3 building block in organic synthesis. Angewandte Chemie International Edition, 44, 1304-1325.

  8. Hekmat, D., Bauer, R., & Neff, V. (2007). Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochemistry, 42, 71–76.

    Article  CAS  Google Scholar 

  9. Gupta, A., Singh, V. K., Qazi, G. N., & Kumar, A. (2001). Gluconobacter oxydans: its biotechnological applications. Journal of molecular microbiology and biotechnology, 3, 445–456.

    CAS  Google Scholar 

  10. Wyman, C. E. (1994). Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technology, 50(1), 3–16.

    Article  CAS  Google Scholar 

  11. Sauer, M., Porro, D., Mattanovich, D., & Branduardi, P. (2008). Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 26, 100–108.

    Article  CAS  Google Scholar 

  12. Buchert, J., Puls, J., & Poutanen, K. (1988). Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates. Applied Microbiology and Biotechnology, 28, 367–372.

    Article  CAS  Google Scholar 

  13. Chun, B. W., Dair, B., Macuch, P. J., Wiebe, D., Porteneuve, C., & Jeknavorian, A. (2006). The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Applied Microbiology and Biotechnology, 131, 645–658.

    Google Scholar 

  14. Zhou, X., Lü, S. S., Xu, Y., Mo, Y. X., & Yu, S. Y. (2015). Improving the performance of cell biocatalysis and the productivity of xylonic acid using a compressed oxygen supply. Biochemical Engineering Journal, 93, 196–199.

    Article  CAS  Google Scholar 

  15. Zhu, J. J., Rong, Y. Y., Yang, J. L., Zhou, X., Xu, Y., Zhang, L. L., Chen, J. H., Yong, Q., & Yu, S. Y. (2015). Integrated production of xylonic acid and bioethanol from acid-catalyzed steam-exploded corn stover. Applied Biochemistry and Biotechnology.

  16. Toivari, M. H., Nygard, Y., Penttila, M., Ruohonen, L., & Wiebe, M. G. (2012). Microbial D-xylonate production. Applied Biochemistry and Biotechnology, 96, 1–8.

    CAS  Google Scholar 

  17. Liebminger, S., Hofbauer, R., Siebenhofer, M., Nyanhongo, G. S., & Guebitz, G. M. (2014). Microbial conversion of crude glycerol to dihydroxyacetone. Waste and Biomass Valorization, 5, 781–787.

    Article  CAS  Google Scholar 

  18. Wang, X., Xu, Y., Lian, Z. L., Yong, Q., & Yu, S. Y. (2014). A one-step method for the simultaneous determination of five wood monosaccharides and the corresponding aldonic acids in fermentation broth using high-performance anion-exchange chromatography coupled with a pulsed amperometric detector. Journal of Wood Chemistry and Technology, 34, 67–76.

    Article  Google Scholar 

  19. Wang, L. L., Qian, J., Hu, Z. C., Zheng, Y. G., & Hu, W. (2006). Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Analytica Chimica Acta, 557, 262–266.

    Article  CAS  Google Scholar 

  20. Johnsen, U., Dambeck, M., Zaiss, H., Fuhrer, T., Soppa, J., Sauer, U., & Schönheit, P. (2009). D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. Journal of Biological Chemistry, 284, 27290–27303.

    Article  CAS  Google Scholar 

  21. Svitel, J., & Sturdik, E. (1994). Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. Journal of Fermentation and Bioengineering, 78, 351–355.

    Article  CAS  Google Scholar 

  22. Hu, Z. C., Zheng, Y. G., & Shen, Y. C. (2010). Dissolved-oxygen-stat fed-batch fermentation of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. Biotechnology and Bioprocess Engineering, 15(4), 651–656.

    Article  CAS  Google Scholar 

  23. Zhang, M. H., Wei, L. J., Zhou, Y., Du, L. Q., Imanaka, T., & Hua, Q. (2013). Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H. Journal of Industrial Microbiology & Biotechnology, 40, 379–388.

    Article  CAS  Google Scholar 

  24. Claret, C., Salmon, J. M., Romieu, C., & Bories, A. (1994). Physiology of Gluconabacter oxydans during dihydroxyacetone production from glycerol. Applied Biochemistry and Biotechnology, 41, 359–365.

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Funding of China (31370573) and Key Research and Development Program of Jiangsu (BE2015758). Also, the authors gratefully acknowledge financial support from Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Xu, Y. & Yu, S. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans . Appl Biochem Biotechnol 178, 1–8 (2016). https://doi.org/10.1007/s12010-015-1853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1853-2

Keywords

Navigation