Skip to main content
Log in

Thermodynamic modeling of naringenin protonation equilibria in NaClO4 aqueous solutions by specific ion interaction theory and Pitzer equations

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The protonation equilibria for the flavonoid naringenin were studied at 25C using combined multi-wavelength spectroscopic and pH-potentiometric methods as a function of the ionic strength. Over a wide range of ionic strengths, 0.10–3.00 mol dm−3, the investigation was performed in different aqueous solutions of NaClO4 as the background electrolyte. The dependence on ionic strength of protonation constants was modeled by the Brönsted–Guggenheim–Scatchard Specific Ion Interaction Theory (SIT) and Pitzer approaches. Apart from the values of SIT interaction coefficients and Pitzer parameters, the protonation constants at infinite dilution (zero ionic strength) were obtained. On the basis of these results, it was found that Pitzer mode l gives more satisfactory results rather than the SIT method.

Ionic strength dependence of protonation constants for the flavonoid naringenin was investigated at 25C using combined spectroscopic and potentiometric methods in different aqueous solutions of NaClO4 (0.10–3.00 mol dm−3). The SIT and Pitzer equations were used for thermodynamic modeling of dependence on ionic strength of the protonation equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lin Y, We S and Lin J 2003 J. Agric. Food Chem. 51 975

    Article  CAS  Google Scholar 

  2. Lien E J, Ren S, Bui H and Wang R 1999 Free Radical Biol. Med. 26 285

    Article  CAS  Google Scholar 

  3. Hanasaki Y, Shunjiro O and Fukui S 1994 Free Radical Biol. Med. 16 845

    Article  CAS  Google Scholar 

  4. Bors W, Heller W, Michel C and Saran M 1990 Methods Enzymol. 186 343

    Article  CAS  Google Scholar 

  5. Rice-Evans C A, Miller N J and Paganga G 1996 Free Radical Biol. Med. 20 933

    Article  CAS  Google Scholar 

  6. Thomas M 2000 J. Nutrition 16 716

    Article  CAS  Google Scholar 

  7. Ryan P and Hynes M J 2008 J. Coord. Chem. 61 3711

    Article  CAS  Google Scholar 

  8. Kuiper G G, Lemmen J G, Carlsson B, Corton J C, Safe S H and Van der Saag P T 1998 Endocrinology 139 4252

    CAS  Google Scholar 

  9. So F V, Guthrie N, Chambers A F, Moussa M and Carroll K K 1996 Nutr. Cancer 262 167

    Article  Google Scholar 

  10. Miyake Y, Yamamoto K, Tsujihara N and Osawa T 1998 Lipids 33 689

    Article  CAS  Google Scholar 

  11. Van Acker F A, Tromp M N, Haenen G R, Van der Vijgh W J and Bast A 2000 Febs. Lett. 473 145

    Article  CAS  Google Scholar 

  12. Almeida W L C, Vitor D N, Pereira M R G, de Sa D S, Alvarez L D G, Pinheiro A M, Costa S L, Costa M F D, Rocha Z N and El-Bacha R S J 2007 Chil. Chem. Soc. 52 1240

    CAS  Google Scholar 

  13. Chimatadar S A, Madawale S V and Nandibewoor S T 2007 Trans. Met. Chem. 32 634

    Article  CAS  Google Scholar 

  14. Adari K K, Nowduri A and Parvataneni V 2008 Acta Chim. Slov. 55 425

    CAS  Google Scholar 

  15. Szakacs Z, Krazni M and Noszal B 2004 Anal. Bioanal. Chem. 378 1428

    Article  CAS  Google Scholar 

  16. Dogan A and Kilic E 2007 Anal. Biochem. 365 7

    Article  CAS  Google Scholar 

  17. Beltran J L, Codony R and Prat M D 1993 Anal. Chim. Acta 276 441

    Article  CAS  Google Scholar 

  18. Gran G 1950 Acta Chem. Scand. 4 559

    Article  CAS  Google Scholar 

  19. Gran G 1952 Analyst 77 661

    Article  CAS  Google Scholar 

  20. Jovanovic S V, Steenken S, Tosic M, Marjanovic B and Simic M G 1994 J. Am. Chem. Soc. 116 4846

    Article  CAS  Google Scholar 

  21. Serra H, Mendes T, Bronze M R and Simplicio A L 2008 Bioorg. Med. Chem. 16 4009

    Article  CAS  Google Scholar 

  22. Jabbari M and Gharib F 2011 J. Solution Chem. 40 561

    Article  CAS  Google Scholar 

  23. Beck M T and Nagypal I 1990 In Chemistry of Complex Equilibria (New York: Ellis Horwood)

  24. Berry R S, Rice S A and Ross J 1980 In Physical Chemistry (New York: John Wiley)

  25. Bronsted J N 1922 J. Am. Chem. Soc. 44 877

    Article  CAS  Google Scholar 

  26. Guggenheim E A 1935 Philos. Mag. 19 588

  27. Scatchard G 1936 Chem. Rev. 19 309

  28. Bretti C, De Stefano C, Foti C, Sammartano S and Vianelli G 2012 J. Chem. Thermodyn. 44 154

    Article  CAS  Google Scholar 

  29. Gharib F, Jabbari M and Farajtabar A 2009 J. Mol. Liq. 144 5

    Article  CAS  Google Scholar 

  30. Gharib F and Farajtabar A 2007 J. Mol. Liq. 135 27

    Article  CAS  Google Scholar 

  31. Pitzer K S 1991 In Activity Coefficients in Electrolyte Solutions 2 nd edition (USA: CRC Press)

  32. Bretti C, Foti C, Porcino N and Sammartano S 2006 J. Solution Chem. 35 1401

    Article  CAS  Google Scholar 

  33. Pitzer K S 1973 J. Phys. Chem. 77 268

    Article  CAS  Google Scholar 

  34. Pitzer K S 1973 In Activity Coefficients in Electrolyte Solutions (Florida: CRC Press)

  35. Koh D S P, Khoo K H and Chan C Y 1985 J. Solution Chem. 14 635

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MORTEZA JABBARI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JABBARI, M., ZHIANI, R. & FARAJTABAR, A. Thermodynamic modeling of naringenin protonation equilibria in NaClO4 aqueous solutions by specific ion interaction theory and Pitzer equations. J Chem Sci 127, 1067–1074 (2015). https://doi.org/10.1007/s12039-015-0869-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0869-z

Keywords

Navigation