Skip to main content
Log in

Structure of the Catalytic Domain of α-l-Arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, Provides Insights into Structure–Function Relationships in Glycoside Hydrolase Family 62

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

α-l-Arabinofuranosidases, belonging to the glycoside hydrolase family (GH) 62, hydrolyze the α-1,2- or α-1,3-bond to liberate l-arabinofuranose from the xylan backbone. Here, we determined the structure of the C-terminal catalytic domain of CcAbf62A, a GH62 α-l-arabinofuranosidase from Coprinopsis cinerea. CcAbf62A is composed of a five-bladed β-propeller, as observed in other GH62 enzymes. The structure near the active site of CcAbf62A is also highly homologous to those of other GH62 enzymes. However, a calcium atom in the catalytic center interacts with an asparagine residue, Asn279, which is not found in other GH62 enzymes. In addition, some residues in subsites +3R, +2NR, +3NR, and +4NR of CcAbf62A are not conserved in other GH62 enzymes. In particular, a histidine residue, His221, is uniquely observed in subsite +2NR of CcAbf62A, which is likely to influence the substrate specificity. The results obtained here suggest that the amino acid residues that interact with the xylan backbone vary among the GH62 enzymes, despite the high similarity of their overall structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jordan, D. B., Bowman, M. J., Braker, J. D., Dien, B. S., Hector, R. E., Lee, C. C., et al. (2012). Plant cell walls to ethanol. Biochemical Journal, 442, 241–252.

    Article  CAS  Google Scholar 

  2. Pauly, M., Gille, S., Liu, L., Mansoori, N., de Souza, A., Schultink, A., et al. (2013). Hemicellulose biosynthesis. Planta, 238, 627–642.

    Article  CAS  Google Scholar 

  3. Kormelink, F. J., Gruppen, H., Viëtor, R. J., & Voragen, A. G. (1993). Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydrate Research, 249, 355–367.

    Article  CAS  Google Scholar 

  4. Gopalan, N., Rodríguez-Duran, L. V., Saucedo-Castaneda, G., & Nampoothiri, K. M. (2015). Review on technological and scientific aspects of feruloyl esterases: a versatile enzyme for biorefining of biomass. Bioresource Technology, 193, 534–544.

    Article  CAS  Google Scholar 

  5. Lagaert, S., Pollet, A., Courtin, C. M., & Volckaert, G. (2014). β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnology Advances, 32, 316–332.

    Article  CAS  Google Scholar 

  6. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490–D495.

    Article  CAS  Google Scholar 

  7. Siguier, B., Haon, M., Nahoum, V., Marcellin, M., Burlet-Schiltz, O., Coutinho, P. M., et al. (2014). First structural insights into α-L-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. Journal of Biological Chemistry, 289, 5261–5273.

    Article  CAS  Google Scholar 

  8. Maehara, T., Fujimoto, Z., Ichinose, H., Michikawa, M., Harazono, K., & Kaneko, S. (2014). Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor. Journal of Biological Chemistry, 289, 7962–7972.

    Article  CAS  Google Scholar 

  9. Wang, W., Mai-Gisondi, G., Stogios, P. J., Kaur, A., Xu, X., Cui, H., et al. (2014). Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 α-L-arabinofuranosidase from Streptomyces thermoviolaceus. Applied and Environmental Microbiology, 80, 5317–5329.

    Article  Google Scholar 

  10. Kaur, A. P., Nocek, B. P., Xu, X., Lowden, M. J., Leyva, J. F., Stogios, P. J., et al. (2015). Functional and structural diversity in GH62 α-L-arabinofuranosidases from the thermophilic fungus Scytalidium thermophilum. Microbial Biotechnology, 8, 419–433.

    Article  CAS  Google Scholar 

  11. Nurizzo, D., Turkenburg, J. P., Charnock, S. J., Roberts, S. M., Dodson, E. J., McKie, V. A., et al. (2002). Cellvibrio japonicus α-L-arabinanase 43 A has a novel five-blade β-propeller fold. Nature Structural Biology, 9, 665–668.

    Article  CAS  Google Scholar 

  12. Proctor, M. R., Taylor, E. J., Nurizzo, D., Turkenburg, J. P., Lloyd, R. M., Vardakou, M., et al. (2005). Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43 A. Proceedings of the National Academy of Sciences of the United States of America, 102, 2697–2702.

    Article  CAS  Google Scholar 

  13. Muraguchi, H., Umezawa, K., Niikura, M., Yoshida, M., Kozaki, T., Ishii, K., et al. (2015). Strand-specific RNA-seq analyses of fruiting body development in Coprinopsis cinerea. PloS One, 10, e0141586.

    Article  Google Scholar 

  14. Stajich, J. E., Wilke, S. K., Ahrén, D., Au, C. H., Birren, B. W., Borodovsky, M., et al. (2010). Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proceedings of the National Academy of Sciences of the United States of America, 107, 11889–11894.

    Article  CAS  Google Scholar 

  15. Hashimoto, K., Yoshida, M., & Hasumi, K. (2011). Isolation and characterization of CcAbf62A, a GH62 α-L-arabinofuranosidase, from the basidiomycete Coprinopsis cinerea. Bioscience, Biotechnology, and Biochemistry, 75, 342–345.

    Article  CAS  Google Scholar 

  16. Otwinowski, Z., & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymolology, 276, 307–326.

    Article  CAS  Google Scholar 

  17. Vagin, A., & Teplyakov, A. (2010). Molecular replacement with MOLREP. Acta Crystallographica, D66, 22–25.

    Google Scholar 

  18. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallographica, D67, 235–242.

    Google Scholar 

  19. Langer, G., Cohen, S. X., Lamzin, V. S., & Perrakis, A. (2008). Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nature Protocols, 3, 1171–1179.

    Article  CAS  Google Scholar 

  20. Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., et al. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica, D67, 355–367.

    Google Scholar 

  21. Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of coot. Acta Crystallographica, D66, 486–501.

    Google Scholar 

  22. Chen, V. B., Arendall 3rd, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., et al. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica, D66, 12–21.

    Google Scholar 

  23. Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372, 774–797.

    Article  CAS  Google Scholar 

  24. Holm, L., & Rosenström, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Research, 38, W545–W549.

    Article  CAS  Google Scholar 

  25. Pons, T., Naumoff, D. G., Martínez-Fleites, C., & Hernández, L. (2004). Three acidic residues are at the active site of a β-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins, 54, 424–432.

    Article  CAS  Google Scholar 

  26. Ladeveze, S., Cioci, G., Roblin, P., Mourey, L., Tranier, S., & Potocki-Veronese, G. (2015). Structural bases for N-glycan processing by mannoside phosphorylase. Acta Crystallographica, D71, 1335–1346.

    Google Scholar 

  27. Ficko-Blean, E., Duffieux, D., Rebuffet, E., Larocque, R., Groisillier, A., Michel, G., et al. (2015). Biochemical and structural investigation of two paralogous glycoside hydrolases from Zobellia galactanivorans: novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family. Acta Crystallographica, D71, 209–223.

    Google Scholar 

  28. Fujimoto, Z., Ichinose, H., Maehara, T., Honda, M., Kitaoka, M., & Kaneko, S. (2010). Crystal structure of an exo-1,5-α-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. Journal of Biological Chemistry, 285, 34134–34143.

    Article  CAS  Google Scholar 

  29. Cartmell, A., McKee, L. S., Pena, M. J., Larsbrink, J., Brumer, H., Kaneko, S., et al. (2011). The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. Journal of Biological Chemistry, 286, 15483–15495.

    Article  CAS  Google Scholar 

  30. Brüx, C., Ben-David, A., Shallom-Shezifi, D., Leon, M., Niefind, K., Shoham, G., et al. (2006). The structure of an inverting GH43 β-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. Journal of Molecular Biology, 359, 97–109.

    Article  Google Scholar 

  31. Wilkens, C., Andersen, S., Petersen, B. O., Li, A., Busse-Wicher, M., Birch, J., et al. (2016). An efficient arabinoxylan-debranching α-L-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Applied Microbiology and Biotechnology, 100, 6265–6277.

    Article  CAS  Google Scholar 

  32. Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.

    Article  CAS  Google Scholar 

  33. Pérez, R., & Eyzaguirre, J. (2016). Aspergillus fumigatus produces two arabinofuranosidases from glycosyl hydrolase family 62: comparative properties of the recombinant enzymes. Applied Biochemistry and Biotechnology, 179, 143–154.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (no. 16K07687 to T.T. and no. 15H04526 to M.Y.) from the Japan Society for the Promotion of Science. This work has been performed under the approval of the Photon Factory Program Advisory Committee (Nos. 2014G512 and 2016G013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tonozuka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonozuka, T., Tanaka, Y., Okuyama, S. et al. Structure of the Catalytic Domain of α-l-Arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, Provides Insights into Structure–Function Relationships in Glycoside Hydrolase Family 62. Appl Biochem Biotechnol 181, 511–525 (2017). https://doi.org/10.1007/s12010-016-2227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2227-0

Keywords

Navigation