Skip to main content
Log in

Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dye-decolorizing peroxidases (DyPs) from Auricularia auricula-judae, Bjerkandera adusta, Pleurotus ostreatus and Marasmius scorodonius (Basidiomycota) were expressed in Escherichia coli using the cold shock-inducible expression system pCOLD I DNA. Functional expression was achieved without the addition of hemin or the co-expression of any chaperones. The presence or absence of the native signal sequence had a strong impact on the success of the expression, but the effect was not consistent for the different DyPs. While BaDyP and AajDyP were stable at 50 °C, the more thermolabile MsP2 and PoDyp, upon catalytic intervention, lend themselves to more rapid thermal inactivation. The bleaching of norbixin (E 160b) using MsP2 was most efficient at pH 4.0, while BaDyP and AajDypP worked best in the weakly acidic to neutral range, indicating a choice of DyPs for a broad field of applications in different food matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim, S. J., & Shoda, M. (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Applied and Environmental Microbiology, 65, 1029–1035.

    CAS  Google Scholar 

  2. Sugano, Y. (2009). DyP-type peroxidases comprise a novel heme peroxidase family. Cellular and Molecular Life Sciences, 66, 1387–1403.

    Article  CAS  Google Scholar 

  3. Liers, C., Bobeth, C., Pecyna, M., Ullrich, R., & Hofrichter, M. (2010). DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Applied Microbiology and Biotechnology, 85, 1869–1879.

    Article  CAS  Google Scholar 

  4. Liers, C., Pecyna, M. J., Kellner, H., Worrich, A., Zorn, H., Steffen, K. T., Hofrichter, M., & Ullrich, R. (2013). Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading Agaricomycetes compared to other fungal and plant heme-peroxidases. Applied Microbiology and Biotechnology, 97, 5839–5849.

    Article  CAS  Google Scholar 

  5. Kaur, A., Van, P. T., Busch, C. R., Robinson, C. K., Pan, M., Pang, W. L., Reiss, D. J., DiRuggiero, J., & Baliga, N. S. (2010). Coordination of frontline defense mechanisms under severe oxidative stress. Molecular Systems Biology, 6, 393.

    Article  Google Scholar 

  6. Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., et al. (2015). The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research, 43, D213–21.

    Article  Google Scholar 

  7. Linde, D., Ruiz-Dueñas, F. J., Fernández-Fueyo, E., Guallar, V., Hammel, K. E., Pogni, R., & Martínez, A. T. (2015). Basidiomycete DyPs: genomic diversity, structural-functional aspects, reaction mechanism and environmental significance. Archives of Biochemistry and Biophysics, 574, 66–74.

    Article  CAS  Google Scholar 

  8. Sugano, Y., Nakano, R., Sasaki, K., & Shoda, M. (2000). Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Applied and Environmental Microbiology, 66, 1754–1758.

    Article  CAS  Google Scholar 

  9. Fernández-Fueyo, E., Linde, D., Almendral, D., López-Lucendo, M. F., Ruiz-Dueñas, F. J. and Martínez, A. T. (2015) Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II). Appl. Microbiol. Biotechnol., 1–16.

  10. Zelena, K., Zorn, H., Nimtz, M., & Berger, R. G. (2009). Heterologous expression of the msp2 gene from Marasmius scorodonius. Archives of Microbiology, 191, 397–402.

    Article  CAS  Google Scholar 

  11. Linde, D., Coscolín, C., Liers, C., Hofrichter, M., Martínez, A. T., & Ruiz-Dueñas, F. J. (2014). Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expression and Purification, 103, 28–37.

    Article  CAS  Google Scholar 

  12. Schein, C. H. (2004). A cool way to make proteins. Nature Biotechnology, 22, 826–827.

    Article  CAS  Google Scholar 

  13. Kang, E. J., Campbell, R. E., Bastian, E., & Drake, M. A. (2010). Invited review: annatto usage and bleaching in dairy foods. Journal of Dairy Science, 93, 3891–3901.

    Article  CAS  Google Scholar 

  14. Linke, D., Leonhardt, R., Eisele, N., Petersen, L. M., Riemer, S., Nimtz, M., & Berger, R. G. (2015). Carotene-degrading activities from Bjerkandera adusta possess an application in detergent industries. Bioprocess and Biosystems Engineering, 38, 1191–1199.

    Article  CAS  Google Scholar 

  15. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8, 785–786.

    CAS  Google Scholar 

  16. Sambrock, J., & Russel, D. W. (2001). Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press. New York: Cold Spring Harbor.

    Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Scheibner, M., Hülsdau, B., Zelena, K., Nimtz, M., de Boer, L., Berger, R. G., & Zorn, H. (2008). Novel peroxidases of Marasmius scorodonius degrade beta-carotene. Applied Microbiology and Biotechnology, 77, 1241–1250.

    Article  CAS  Google Scholar 

  19. Britton, H. T. S. and Robinson, R. A. (1931) CXCVIII. - Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc., 1456.

  20. 20 Lauro, G. J. and Francis, F. J. (2000). Natural food colorants. Science and technology, Marcel Dekker, New York.

  21. Zalucki, Y. M., Jones, C. E., Ng, P. S. K., Schulz, B. L., & Jennings, M. P. (2010). Signal sequence non-optimal codons are required for the correct folding of mature maltose binding protein. Biochimica et Biophysica Acta, 1798, 1244–1249.

    Article  CAS  Google Scholar 

  22. Bleve, G., Lezzi, C., Spagnolo, S., Tasco, G., Tufariello, M., Casadio, R., Mita, G., Rampino, P., & Grieco, F. (2013). Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Protein Engineering, Design and Selection, 26, 1–13.

    Article  CAS  Google Scholar 

  23. 23 Spadiut, O., Posch, G., Ludwig, R., Haltrich, D. and Peterbauer, C. K. (2010). Evaluation of different expression systems for the heterologous expression of pyranose 2-oxidase from Trametes multicolor in E. coli. Microb. Cell Fact. 9, 14.

  24. Shirano, Y., & Shibata, D. (1990). Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level. FEBS Letters, 271, 128–130.

    Article  CAS  Google Scholar 

  25. Zelena, K., Krings, U., & Berger, R. G. (2012). Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli. Bioresource Technology, 108, 231–239.

    Article  CAS  Google Scholar 

  26. Leonhardt, R.-H., Plagemann, I., Linke, D., Zelena, K., & Berger, R. G. (2013). Orthologous lipoxygenases of Pleurotus spp.—a comparison of substrate specificity and sequence homology. J. Mol. Catal, 97, 189–195.

    Article  CAS  Google Scholar 

  27. Bao, X., Liu, A., Lu, X., & Li, J.-J. (2012). Direct over-expression, characterization and H2O2 stability study of active Pleurotus eryngii versatile peroxidase in Escherichia coli. Biotechnology Letters, 34, 1537–1543.

    Article  CAS  Google Scholar 

  28. Mohorcic, M., Bencina, M., Friedrich, J., & Jerala, R. (2009). Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Bioresource Technology, 100, 851–858.

    Article  CAS  Google Scholar 

  29. Larrondo, L. F., Lobos, S., Stewart, P., Cullen, D., & Vicuña, R. (2001). Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium. Applied and Environmental Microbiology, 67, 2070–2075.

    Article  CAS  Google Scholar 

  30. Eibes, G. M., Lú-Chau, T. A., Ruiz-Dueñas, F. J., Feijoo, G., Martínez, M. J., Martínez, A. T., & Lema, J. M. (2009). Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess and Biosystems Engineering, 32, 129–134.

    Article  CAS  Google Scholar 

  31. Jiang, F., Kongsaeree, P., Charron, R., Lajoie, C., Xu, H., Scott, G., & Kelly, C. (2008). Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnology and Bioengineering, 99, 540–549.

    Article  CAS  Google Scholar 

  32. Ramzi, A. B., Hyeon, J. E., & Han, S. O. (2015). Improved catalytic activities of a dye-decolorizing peroxidase (DyP) by overexpression of ALA and heme biosynthesis genes in Escherichia coli. Process Biochemistry, 50, 1272–1276.

    Article  CAS  Google Scholar 

  33. Kuo, W.-H. K., & Chase, H. A. (2011). Exploiting the interactions between poly-histidine fusion tags and immobilized metal ions. Biotechnology Letters, 33, 1075–1084.

    Article  CAS  Google Scholar 

  34. Szweda, R. T., Schmidt, K., & Zorn, H. (2013). Bleaching of colored whey and milk by a multiple-enzyme system. European Food Research and Technology, 237, 377–384.

    Article  CAS  Google Scholar 

  35. Barnicoat, C. R. (1937). 151. The reactions and properties of annatto as a cheese colour, with particular reference to the chemistry of cheese discoloration. Journal of Dairy Research, 8, 61.

    Article  CAS  Google Scholar 

  36. Montenegro, M. A., Rios, A. D. O., Mercadante, A. Z., Nazareno, M. A., & Borsarelli, C. D. (2004). Model studies on the photosensitized isomerization of bixin. Journal of Agricultural and Food Chemistry, 52, 367–373.

    Article  CAS  Google Scholar 

  37. Rios, A. D. O., Borsarelli, C. D., & Mercadante, A. Z. (2005). Thermal degradation kinetics of bixin in an aqueous model system. Journal of Agricultural and Food Chemistry, 53, 2307–2311.

    Article  Google Scholar 

  38. Lawrence, R. C., Heap, H. A., & Gilles, J. (1984). A controlled approach to cheese technology. Journal of Dairy Science, 67, 1632–1645.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of the work by the BMBF cluster Biokatalyse2021 (FKZ0315172B) is gratefully acknowledged, as are helpful discussions with D. Linke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Behrens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrens, C.J., Zelena, K. & Berger, R.G. Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases. Appl Biochem Biotechnol 179, 1404–1417 (2016). https://doi.org/10.1007/s12010-016-2073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2073-0

Keywords

Navigation