Advertisement

Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1404–1417 | Cite as

Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases

  • Christoph J. Behrens
  • Kateryna Zelena
  • Ralf G. Berger
Article

Abstract

Dye-decolorizing peroxidases (DyPs) from Auricularia auricula-judae, Bjerkandera adusta, Pleurotus ostreatus and Marasmius scorodonius (Basidiomycota) were expressed in Escherichia coli using the cold shock-inducible expression system pCOLD I DNA. Functional expression was achieved without the addition of hemin or the co-expression of any chaperones. The presence or absence of the native signal sequence had a strong impact on the success of the expression, but the effect was not consistent for the different DyPs. While BaDyP and AajDyP were stable at 50 °C, the more thermolabile MsP2 and PoDyp, upon catalytic intervention, lend themselves to more rapid thermal inactivation. The bleaching of norbixin (E 160b) using MsP2 was most efficient at pH 4.0, while BaDyP and AajDypP worked best in the weakly acidic to neutral range, indicating a choice of DyPs for a broad field of applications in different food matrices.

Keywords

Heterologous expression Dye-decolorizing peroxidase (DyP) Escherichia coli Basidiomycota 

Notes

Acknowledgments

Support of the work by the BMBF cluster Biokatalyse2021 (FKZ0315172B) is gratefully acknowledged, as are helpful discussions with D. Linke.

References

  1. 1.
    Kim, S. J., & Shoda, M. (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Applied and Environmental Microbiology, 65, 1029–1035.Google Scholar
  2. 2.
    Sugano, Y. (2009). DyP-type peroxidases comprise a novel heme peroxidase family. Cellular and Molecular Life Sciences, 66, 1387–1403.CrossRefGoogle Scholar
  3. 3.
    Liers, C., Bobeth, C., Pecyna, M., Ullrich, R., & Hofrichter, M. (2010). DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Applied Microbiology and Biotechnology, 85, 1869–1879.CrossRefGoogle Scholar
  4. 4.
    Liers, C., Pecyna, M. J., Kellner, H., Worrich, A., Zorn, H., Steffen, K. T., Hofrichter, M., & Ullrich, R. (2013). Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading Agaricomycetes compared to other fungal and plant heme-peroxidases. Applied Microbiology and Biotechnology, 97, 5839–5849.CrossRefGoogle Scholar
  5. 5.
    Kaur, A., Van, P. T., Busch, C. R., Robinson, C. K., Pan, M., Pang, W. L., Reiss, D. J., DiRuggiero, J., & Baliga, N. S. (2010). Coordination of frontline defense mechanisms under severe oxidative stress. Molecular Systems Biology, 6, 393.CrossRefGoogle Scholar
  6. 6.
    Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., et al. (2015). The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research, 43, D213–21.CrossRefGoogle Scholar
  7. 7.
    Linde, D., Ruiz-Dueñas, F. J., Fernández-Fueyo, E., Guallar, V., Hammel, K. E., Pogni, R., & Martínez, A. T. (2015). Basidiomycete DyPs: genomic diversity, structural-functional aspects, reaction mechanism and environmental significance. Archives of Biochemistry and Biophysics, 574, 66–74.CrossRefGoogle Scholar
  8. 8.
    Sugano, Y., Nakano, R., Sasaki, K., & Shoda, M. (2000). Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Applied and Environmental Microbiology, 66, 1754–1758.CrossRefGoogle Scholar
  9. 9.
    Fernández-Fueyo, E., Linde, D., Almendral, D., López-Lucendo, M. F., Ruiz-Dueñas, F. J. and Martínez, A. T. (2015) Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II). Appl. Microbiol. Biotechnol., 1–16.Google Scholar
  10. 10.
    Zelena, K., Zorn, H., Nimtz, M., & Berger, R. G. (2009). Heterologous expression of the msp2 gene from Marasmius scorodonius. Archives of Microbiology, 191, 397–402.CrossRefGoogle Scholar
  11. 11.
    Linde, D., Coscolín, C., Liers, C., Hofrichter, M., Martínez, A. T., & Ruiz-Dueñas, F. J. (2014). Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expression and Purification, 103, 28–37.CrossRefGoogle Scholar
  12. 12.
    Schein, C. H. (2004). A cool way to make proteins. Nature Biotechnology, 22, 826–827.CrossRefGoogle Scholar
  13. 13.
    Kang, E. J., Campbell, R. E., Bastian, E., & Drake, M. A. (2010). Invited review: annatto usage and bleaching in dairy foods. Journal of Dairy Science, 93, 3891–3901.CrossRefGoogle Scholar
  14. 14.
    Linke, D., Leonhardt, R., Eisele, N., Petersen, L. M., Riemer, S., Nimtz, M., & Berger, R. G. (2015). Carotene-degrading activities from Bjerkandera adusta possess an application in detergent industries. Bioprocess and Biosystems Engineering, 38, 1191–1199.CrossRefGoogle Scholar
  15. 15.
    Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8, 785–786.Google Scholar
  16. 16.
    Sambrock, J., & Russel, D. W. (2001). Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press. New York: Cold Spring Harbor.Google Scholar
  17. 17.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  18. 18.
    Scheibner, M., Hülsdau, B., Zelena, K., Nimtz, M., de Boer, L., Berger, R. G., & Zorn, H. (2008). Novel peroxidases of Marasmius scorodonius degrade beta-carotene. Applied Microbiology and Biotechnology, 77, 1241–1250.CrossRefGoogle Scholar
  19. 19.
    Britton, H. T. S. and Robinson, R. A. (1931) CXCVIII. - Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc., 1456.Google Scholar
  20. 20.
    20 Lauro, G. J. and Francis, F. J. (2000). Natural food colorants. Science and technology, Marcel Dekker, New York.Google Scholar
  21. 21.
    Zalucki, Y. M., Jones, C. E., Ng, P. S. K., Schulz, B. L., & Jennings, M. P. (2010). Signal sequence non-optimal codons are required for the correct folding of mature maltose binding protein. Biochimica et Biophysica Acta, 1798, 1244–1249.CrossRefGoogle Scholar
  22. 22.
    Bleve, G., Lezzi, C., Spagnolo, S., Tasco, G., Tufariello, M., Casadio, R., Mita, G., Rampino, P., & Grieco, F. (2013). Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Protein Engineering, Design and Selection, 26, 1–13.CrossRefGoogle Scholar
  23. 23.
    23 Spadiut, O., Posch, G., Ludwig, R., Haltrich, D. and Peterbauer, C. K. (2010). Evaluation of different expression systems for the heterologous expression of pyranose 2-oxidase from Trametes multicolor in E. coli. Microb. Cell Fact. 9, 14.Google Scholar
  24. 24.
    Shirano, Y., & Shibata, D. (1990). Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level. FEBS Letters, 271, 128–130.CrossRefGoogle Scholar
  25. 25.
    Zelena, K., Krings, U., & Berger, R. G. (2012). Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli. Bioresource Technology, 108, 231–239.CrossRefGoogle Scholar
  26. 26.
    Leonhardt, R.-H., Plagemann, I., Linke, D., Zelena, K., & Berger, R. G. (2013). Orthologous lipoxygenases of Pleurotus spp.—a comparison of substrate specificity and sequence homology. J. Mol. Catal, 97, 189–195.CrossRefGoogle Scholar
  27. 27.
    Bao, X., Liu, A., Lu, X., & Li, J.-J. (2012). Direct over-expression, characterization and H2O2 stability study of active Pleurotus eryngii versatile peroxidase in Escherichia coli. Biotechnology Letters, 34, 1537–1543.CrossRefGoogle Scholar
  28. 28.
    Mohorcic, M., Bencina, M., Friedrich, J., & Jerala, R. (2009). Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Bioresource Technology, 100, 851–858.CrossRefGoogle Scholar
  29. 29.
    Larrondo, L. F., Lobos, S., Stewart, P., Cullen, D., & Vicuña, R. (2001). Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium. Applied and Environmental Microbiology, 67, 2070–2075.CrossRefGoogle Scholar
  30. 30.
    Eibes, G. M., Lú-Chau, T. A., Ruiz-Dueñas, F. J., Feijoo, G., Martínez, M. J., Martínez, A. T., & Lema, J. M. (2009). Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess and Biosystems Engineering, 32, 129–134.CrossRefGoogle Scholar
  31. 31.
    Jiang, F., Kongsaeree, P., Charron, R., Lajoie, C., Xu, H., Scott, G., & Kelly, C. (2008). Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnology and Bioengineering, 99, 540–549.CrossRefGoogle Scholar
  32. 32.
    Ramzi, A. B., Hyeon, J. E., & Han, S. O. (2015). Improved catalytic activities of a dye-decolorizing peroxidase (DyP) by overexpression of ALA and heme biosynthesis genes in Escherichia coli. Process Biochemistry, 50, 1272–1276.CrossRefGoogle Scholar
  33. 33.
    Kuo, W.-H. K., & Chase, H. A. (2011). Exploiting the interactions between poly-histidine fusion tags and immobilized metal ions. Biotechnology Letters, 33, 1075–1084.CrossRefGoogle Scholar
  34. 34.
    Szweda, R. T., Schmidt, K., & Zorn, H. (2013). Bleaching of colored whey and milk by a multiple-enzyme system. European Food Research and Technology, 237, 377–384.CrossRefGoogle Scholar
  35. 35.
    Barnicoat, C. R. (1937). 151. The reactions and properties of annatto as a cheese colour, with particular reference to the chemistry of cheese discoloration. Journal of Dairy Research, 8, 61.CrossRefGoogle Scholar
  36. 36.
    Montenegro, M. A., Rios, A. D. O., Mercadante, A. Z., Nazareno, M. A., & Borsarelli, C. D. (2004). Model studies on the photosensitized isomerization of bixin. Journal of Agricultural and Food Chemistry, 52, 367–373.CrossRefGoogle Scholar
  37. 37.
    Rios, A. D. O., Borsarelli, C. D., & Mercadante, A. Z. (2005). Thermal degradation kinetics of bixin in an aqueous model system. Journal of Agricultural and Food Chemistry, 53, 2307–2311.CrossRefGoogle Scholar
  38. 38.
    Lawrence, R. C., Heap, H. A., & Gilles, J. (1984). A controlled approach to cheese technology. Journal of Dairy Science, 67, 1632–1645.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Christoph J. Behrens
    • 1
  • Kateryna Zelena
    • 1
  • Ralf G. Berger
    • 1
  1. 1.Gottfried Wilhelm Leibniz Universität HannoverInstitut für LebensmittelchemieHannoverGermany

Personalised recommendations