Skip to main content
Log in

Enhancement of Echinocandin B Production by a UV- and Microwave-Induced Mutant of Aspergillus nidulans with Precursor- and Biotin-Supplying Strategy

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Echinocandin B belongs to lipopeptide antifungal antibiotic bearing five types of direct precursor amino acids including proline, ornithine, tyrosine, threonine, and leucine. The objective of this study is to screen over-producing mutant in order to improve echinocandin B production; a stable mutant Aspergillus nidulans ZJB12073, which can use fructose as optimal carbon source instead of expensive mannitol, was selected from thousand isolates after several cycles of UV and microwave irradiation in turn. The results showed that mutant strain ZJB12073 exhibited 1.9-fold improvement in echinocandin B production to 1656.3 ± 40.3 mg/L when compared with the parent strain. Furthermore, the effects of precursor amino acids and some chemicals on echinocandin B biosynthesis in A. nidulans were investigated, respectively. Tyrosine, leucine, and biotin were selected as key factors to optimize the medium employing uniform design method. The results showed that the optimized fermentation medium provided another 63.1 % increase to 2701.6 ± 31.7 mg/L in final echinocandin B concentration compared to that of unoptimized medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Denning, D. W. (2002). Echinocandins: a new class of antifungal. The Journal of Antimicrobial Chemotherapy, 49, 889–891.

    Article  CAS  Google Scholar 

  2. Scott, L. J. (2012). Micafungin a review of its use in the prophylaxis and treatment of invasive Candida infections. Drugs, 72, 2141–2165.

    Article  CAS  Google Scholar 

  3. Emri, T., Majoros, L., Toth, V., & Pocsi, I. (2013). Echinocandins: production and applications. Applied Microbiology and Biotechnology, 97, 3267–3284.

    Article  CAS  Google Scholar 

  4. Hensens, O. D., Liesch, J. M., Zink, D. L., Smith, J. L., Wichmann, C. F., & Schwartz, R. E. (1992). Pneumocandins from Zalerion arboricola. III. Structure elucidation. The Journal of Antibiotics, 45, 1875–1885.

    Article  CAS  Google Scholar 

  5. Iwamoto, T., Fujie, A., Sakamoto, K., Tsurumi, Y., Shigematsu, N., Yamashita, M., Hashimoto, S., Okuhara, M., & Kohsaka, M. (1994). WF11899A, B and C, novel antifungal lipopeptides. I. Taxonomy, fermentation, isolation and physico-chemical properties. The Journal of Antibiotics, 47, 1084–1091.

    Article  CAS  Google Scholar 

  6. Kanasaki, R., Sakamoto, K., Hashimoto, M., Takase, S., Tsurumi, Y., Fujie, A., Hino, M., Hashimoto, S., & Hori, Y. (2006). FR209602 and related compounds, novel antifungal lipopeptides from Coleophoma crateriformis no.738—I. taxonomy, fermentation, isolation and physico-chemical properties. The Journal of Antibiotics, 59, 137–144.

    Article  CAS  Google Scholar 

  7. Adefarati, A. A., Giacobbe, R. A., Hensens, O. D., & Tkacz, J. S. (1991). Biosynthesis of L-671,329, an echinocandin-type antibiotic produced by Zalerion arboricola—origins of some of the unusual amino acids and the dimethylmyristic acid side chain. Journal of the American Chemical Society, 113, 3542–3545.

    Article  CAS  Google Scholar 

  8. Schwarzer, D., Finking, R., & Marahiel, M. A. (2003). Nonribosomal peptides: from genes to products. Natural Product Reports, 20, 275–287.

    Article  CAS  Google Scholar 

  9. Youssar, L., Gruning, B. A., Erxleben, A., Gunther, S., & Huttel, W. (2012). Genome sequence of the fungus Glarea lozoyensis: the first genome sequence of a species from the Helotiaceae family. Eukaryotic Cell, 11, 250.

    Article  CAS  Google Scholar 

  10. Cacho, R. A., Jiang, W., Chooi, Y. H., Walsh, C. T., & Tang, Y. (2012). Identification and characterization of the echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440. Journal of the American Chemical Society, 134, 16781–16790.

    Article  CAS  Google Scholar 

  11. Chen, L., Yue, Q., Zhang, X. Y., Xiang, M. C., Wang, C. S., Li, S. J., Che, Y. S., Ortiz-Lopez, F. J., Bills, G. F., Liu, X. Z., & An, Z. Q. (2013). Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genomics, 14, 339.

    Article  CAS  Google Scholar 

  12. Baltz, R. H. (2011). Strain improvement in actinomycetes in the postgenomic era. Journal of Industrial Microbiology and Biotechnology, 38, 657–666.

    Article  CAS  Google Scholar 

  13. Brown, D. W., & Salvo, J. J. (1994). Isolation and characterization of sexual spore pigments from Aspergillu nidulans. Applied and Environmental Microbiology, 60, 979–983.

    CAS  Google Scholar 

  14. Kaur, B., Sharma, M., Soni, R., Oberoi, H. S., & Chadha, B. S. (2013). Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Applied Biochemistry and Biotechnology, 169, 393–407.

    Article  CAS  Google Scholar 

  15. Rohrig, J., Kastner, C., & Fischer, R. (2013). Light inhibits spore germination through phytochrome in Aspergillus nidulans. Current Genetics, 59, 55–62.

    Article  Google Scholar 

  16. Zou, S. P., Zhong, W., Xia, C. J., Gu, Y. N., Niu, K., Zheng, Y. G., & Shen, Y. C. (2015). Mutagenesis breeding of high echinocandin B producing strain and further titer improvement with culture medium optimization. Bioprocess and Biosystems Engineering, 38, 1845–1854.

    Article  CAS  Google Scholar 

  17. Li, T. L., Fan, Y. X., Nambou, K., Hu, F. X., Imanaka, T., Wei, L. J., & Hua, Q. (2015). Improvement of ansamitocin P-3 production by Actinosynnema mirum with fructose as the sole carbon source. Applied Biochemistry and Biotechnology, 175, 2845–2856.

    Article  CAS  Google Scholar 

  18. Pandit, N. T., & Pandit, A. B. (2014). Exploration of a cheaper carbon source for extracellular beta-glucosidase synthesis from Debaryomyces pseudopolymorphus NRRL YB-4229. Applied Biochemistry and Biotechnology, 172, 3606–3620.

    Article  CAS  Google Scholar 

  19. Qi, K., Xia, X. X., & Zhong, J. J. (2015). Enhanced anti-oxidative activity and lignocellulosic ethanol production by biotin addition to medium in Pichia guilliermondii fermentation. Bioresource Technology, 189, 36–43.

    Article  CAS  Google Scholar 

  20. Xi, Y. L., Chen, K. Q., Xu, R., Zhang, J. H., Bai, X. F., Jiang, M., Wei, P., & Chen, J. Y. (2012). Effect of biotin and a similar compound on succinic acid fermentation by Actinobacillus succinogenes in a chemically defined medium. Biochemical Engineering Journal, 69, 87–92.

    Article  CAS  Google Scholar 

  21. Ng, I. S., Ye, C. M., Zhang, Z. X., Lu, Y. H., & Jing, K. J. (2014). Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess and Biosystems Engineering, 37, 415–423.

    Article  CAS  Google Scholar 

  22. Connors, N., & Pollard, D. (2004). Pneumocandin B 0 production by fermentation of the fungus Glarea lozoyensis: physiological and engineering factors affecting titer and structural analogue formation (pp. 515–538). New York: Hand book of Industrial Mycology, Marcel Dekker.

    Google Scholar 

  23. Chen, S. C. A. (2011). Echinocandin antifungal drugs in fungal infections: a comparison (vol 71, pg 11, 2011). Drugs, 71, 253.

    Article  CAS  Google Scholar 

  24. Toth, V., Nagy, C. T., Miskei, M., Pocsi, I., & Emri, T. (2011). Polyphasic characterization of “Aspergillus nidulans var. roseus” ATCC 58397. Folia Microbiologica, 56, 381–388.

    Article  CAS  Google Scholar 

  25. Kraas, F. I., Helmetag, V., Wittmann, M., Strieker, M., & Marahiel, M. A. (2010). Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chemistry & Biology, 17, 872–880.

    Article  CAS  Google Scholar 

  26. Iwamoto, K., & Shiraiwa, Y. (2005). Salt-regulated mannitol metabolism in algae. Marine Biotechnology, 7, 407–415.

    Article  CAS  Google Scholar 

  27. Jennings, D. H. (1984). Polyol metabolism in fungi. Advances in Microbial Physiology, 25, 149–193.

    Article  CAS  Google Scholar 

  28. Imai, K., Fukushima, T., Santa, T., Homma, H., Hamase, K., Sakai, K., & Kato, M. (1996). Analytical chemistry and biochemistry of D-amino acids. Biomedical Chromatography, 10, 303–312.

    Article  CAS  Google Scholar 

  29. Mouslim, J., David, L., Petel, G., & Gendraud, M. (1993). Effect of exogenous methyl oleate on the time-course of some parameters of Streptomyces hygroscopicus NRRL B-1865 culture. Applied Microbiology and Biotechnology, 39, 585–588.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by National Major Project of Scientific Instruments Development of China (2012YQ150087), granted from the Ministry of Science and Technology of People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZC., Peng, LY. & Zheng, YG. Enhancement of Echinocandin B Production by a UV- and Microwave-Induced Mutant of Aspergillus nidulans with Precursor- and Biotin-Supplying Strategy. Appl Biochem Biotechnol 179, 1213–1226 (2016). https://doi.org/10.1007/s12010-016-2060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2060-5

Keywords

Navigation