Skip to main content
Log in

Light inhibits spore germination through phytochrome in Aspergillus nidulans

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Aspergillus nidulans responds to light in several aspects. The balance between sexual and asexual development as well as the amount of secondary metabolites produced is controlled by light. Here, we show that germination is largely delayed by blue (450 nm), red (700 nm), and far-red light (740 nm). The largest effect was observed with far-red light. Whereas 60 % of the conidia produced a germ tube after 20 h in the dark, less than 5 % of the conidia germinated under far-red light conditions. Because swelling of conidia was not affected, light appears to act at the stage of germ-tube formation. In the absence of nutrients, far-red light even inhibited swelling of conidia, whereas in the dark, conidia did swell and germinated after prolonged incubation. The blue-light signaling components, LreA (WC-1) and LreB (WC-2), and also the cryptochrome/photolyase CryA were not required for germination inhibition. However, in the phytochrome mutant, ∆fphA, the germination delay was released, but germination was delayed in the dark in comparison to wild type. This suggests a novel function of phytochrome as far-red light sensor and as activator of polarized growth in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad A, Fernández-Molina JV, Bikandi J, Ramírez A, Margbareto J, Sendino J, Hernando FL, Pontón J, Garaizar J, Rementeria A (2010) What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 27:155–182

    Article  PubMed  Google Scholar 

  • Adams TH (1994) Asexual sporulation in higher fungi. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 367–382

    Google Scholar 

  • Baker CL, Loros JJ, Dunlap JC (2011) The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36(1):95–110

    Article  PubMed  Google Scholar 

  • Ballario P, Vittorioso P, Margrelli A, Toalora C, Cabibo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora crassa, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed  CAS  Google Scholar 

  • Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbio Rev 36:1–24

    Article  CAS  Google Scholar 

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008a) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    Article  PubMed  CAS  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008b) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  PubMed  CAS  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Bragg JD (1981) Inhibitory effects of light on ascospore germination of Pseudoarachniotus marginosporus. Mycologia 73:681–688

    Article  Google Scholar 

  • Brandt S, von Stetten D, Bünther M, Hildebrandt P, Frankenberg-Dinkel N (2008) The fungal phytochrome FphA from Aspergillus nidulans. J Biol Chem 283:34605–34614

    Article  PubMed  CAS  Google Scholar 

  • Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL (2001) Photochemical reaction cycle and proton transfer in Neurospora rhodopsin. J Biol Chem 276:32495–32505

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Simons MJ, Merrow M (2008) Lego clocks: building a clock from parts. Genes Dev 22:1422–1426

    Article  PubMed  CAS  Google Scholar 

  • Busch S, Braus GH (2007) How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876

    Article  PubMed  CAS  Google Scholar 

  • Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Degli-Innocenti F, Chambers JA, Russo VE (1984) Conidia induce the formation of protoperithecia in Neurospora crassa: further characterization of white collar mutants. J Bacteriol 159:808–810

    PubMed  CAS  Google Scholar 

  • d’Enfert C (1997) Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21:163–172

    Article  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    Article  PubMed  CAS  Google Scholar 

  • Harispe L, Portela C, Scazzocchio C, Peñalva MA, Gorfinkiel L (2008) Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryot Cell 7:141–153

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama R, Nakahama T, Higuchi Y, Kitamoto K (2007) Light represses conidiation in koji mold Aspergillus oryzae. Biosci Biotech Biochem 71:1844–1849

    Article  CAS  Google Scholar 

  • Heintzen C, Liu Y (2007) The Neurospora crassa circadian clock. Adv Genet 58:25–66

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  PubMed  Google Scholar 

  • Käfer E (1965) The origin of translocations in Aspergillus nidulans. Genetics 52:217–232

    PubMed  Google Scholar 

  • Käfer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131

    Article  PubMed  Google Scholar 

  • Kim H-S, Han K-Y, Kim K-J, Han D-M, Jahng K-Y, Chae K-S (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80

    Article  PubMed  CAS  Google Scholar 

  • Lucas JA, Kendrick RE, Givan CV (1975) Photocontrol of fungal spore germination. Plant Physiol 56:847–849

    Article  PubMed  CAS  Google Scholar 

  • Lukens RJ (1965) Reversal by red light of blue light inhibition of sporulation in Alternaria solani. Phytophathology 55:1032

    Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Nelson MA, Morelli G, Carattoli A, Romano N, Macino P (1989) Molecular cloning of a Neurospora crassa carotenoid biosythetic gene (albin-3) regulated by blue light and the products of the white collar genes. Mol Cell Biol 9:1271–1276

    PubMed  CAS  Google Scholar 

  • Osherov N, May G (2000) Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155:647–656

    PubMed  CAS  Google Scholar 

  • Osherov N, May GS (2001) The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199:153–160

    Article  PubMed  CAS  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571

    Article  PubMed  CAS  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    Article  PubMed  CAS  Google Scholar 

  • Purschwitz J, Müller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the white collar protein LreB. Mol Genet Genomics 281:35–42

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol (64):585–610

  • Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 63:242–255

    Article  PubMed  CAS  Google Scholar 

  • Talora C, Franchi L, Linden H, Ballario P, Macino G (1999) Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J 18:4961–4968

    Article  PubMed  CAS  Google Scholar 

  • Tasler R, Moises T, Frankenberg-Dinkel N (2005) Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa. FEBS J 272:1927–1936

    Article  PubMed  CAS  Google Scholar 

  • Waring RB, May GS, Morris NR (1989) Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin coding genes. Gene 79:119–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Baden-Württemberg Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Fischer.

Additional information

Communicated by U. Kueck.

J. Röhrig and C. Kastner contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röhrig, J., Kastner, C. & Fischer, R. Light inhibits spore germination through phytochrome in Aspergillus nidulans . Curr Genet 59, 55–62 (2013). https://doi.org/10.1007/s00294-013-0387-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-013-0387-9

Keywords

Navigation