Skip to main content
Log in

Cloning, Purification and Characterization of a Highly Thermostable Amylase Gene of Thermotoga petrophila into Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A putative α-amylase gene of Thermotoga petrophila was cloned and expressed in Escherichia coli BL21 (DE3) using pET-21a (+), as an expression vector. The growth conditions were optimized for maximal expression of the α-amylase using various parameters, such as pH, temperature, time of induction and addition of an inducer. The optimum temperature and pH for the maximum expression of α-amylase were 22 °C and 7.0 pH units, respectively. Purification of the recombinant enzyme was carried out by heat treatment method, followed by ion exchange chromatography with 34.6-fold purification having specific activity of 126.31 U mg−1 and a recovery of 56.25 %. Molecular weight of the purified α-amylase, 70 kDa, was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 100 °C temperature and at pH of 7.0. The enzyme activity was increased in the presence of metal ions especially Ca+2 and decreased in the presence of EDTA indicating that the α-amylase was a metalloenzyme. However, addition of 1 % Tween 20, Tween 80 and β-mercaptoethanol constrained the enzyme activity to 87, 96 and 89 %, respectively. No considerable effect of organic solvents (ethanol, methanol, isopropanol, acetone and n-butanol) was observed on enzyme activity. With soluble starch as a substrate, the enzyme activity under optimized conditions was 73.8 U mg−1. The α-amylase enzyme was active to hydrolyse starch forming maltose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Der Maarel, M. J., Van Der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–155.

    Article  Google Scholar 

  2. Nakajima, R., Imanaka, T., & Aiba, S. (1986). Comparison of amino acid sequences of eleven different α-amylases. Applied Microbiology and Biotechnology, 23, 355–360.

    Article  CAS  Google Scholar 

  3. MacGregor, E. A. (1988). α-Amylase structure and activity. Journal of Protein Chemistry, 7, 399–415.

    Article  CAS  Google Scholar 

  4. Svensson, B. (1988). Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Letters, 230, 72–76.

    Article  CAS  Google Scholar 

  5. Burhan, A., Nisa, U., Gokhan, C., Omer, C., Ashabil, A., & Osman, G. (2003). Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochemistry, 38, 1397–1403.

    Article  CAS  Google Scholar 

  6. Shaw, J. F., Lin, F. P., Chen, S. C., & Chen, H. C. (1995). Purification and properties of an extracellular a-amylase from Thermus sp. Botanical Bulletin of Academia Sinica, 36, 195–200.

    CAS  Google Scholar 

  7. Tomita, K., Nagata, K., Kondo, H., Shiraishi, T., Tsubota, H., Suzuki, H., & Ochi, H. (1990). Thermostable glucokinase from Bacillus stearothermophilus and its analytical application. Annals of the New York Academy of Sciences, 613, 421–425.

    Article  CAS  Google Scholar 

  8. Ilori, M. O., Amund, O. O., & Omidiji, O. (1997). Purification and properties of an α-amylase produced by a cassava-fermenting strain of Micrococcus luteus. Folia Microbiologica, 42, 445–449.

    Article  CAS  Google Scholar 

  9. Ribeiro, J. M., Rowton, E. D., & Charlab, R. (2000). Salivary amylase activity of the phlebotomine sand fly, Lutzomyia longipalpis. Insect Biochemistry and Molecular Biology, 30, 271–277.

    Article  CAS  Google Scholar 

  10. Hagihara, H., Igarashi, K., Hayashi, Y., Endo, K., Ikawa-Kitayama, K., Ozaki, K., & Ito, S. (2001). Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Applied and Environmental Microbiology, 67, 1744–1750.

    Article  CAS  Google Scholar 

  11. Zółtowska, K. (2000). Purification and characterization of alpha-amylases from the intestine and muscle of Ascaris suum (Nematoda). Acta Biochimica Polonica, 48, 763–774.

    Google Scholar 

  12. Bassinello, P. Z., Cordenunsi, B. R., & Lajolo, F. M. (2002). Amylolytic activity in fruits: comparison of different substrates and methods using banana as model. Journal of Agricultural and Food Chemistry, 50, 5781–5786.

    Article  CAS  Google Scholar 

  13. Ikram-ul-Haq, Ashraf, H., Iqbal, J., & Qadeer, M. (2003). Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87, 57–61.

    Article  CAS  Google Scholar 

  14. Bentley, I., & Williams, E. (1996). Starch conversion. In Industrial enzymology (2nd ed., pp. 339–357). New York: Stockton.

    Google Scholar 

  15. Adams, M. W. (1993). Enzymes and proteins from organisms that grow near and above 100 degree C. Annual Reviews in Microbiology, 47, 627–658.

    Article  CAS  Google Scholar 

  16. Karakaş, B., İnan, M., & Certel, M. (2010). Expression and characterization of Bacillus subtilis PY22 α-amylase in Pichia pastoris. Journal of Molecular Catalysis B: Enzymatic, 64, 129–134.

    Article  Google Scholar 

  17. Sidkey, N., Abo-Shadi, M., Balahmar, R., Sabry, R., & Badrany, G. (2011). Purification and characterization of α-amylase from a newly isolated Aspergillus flavus F2Mbb. International Research Journal of Microbiology, 2, 96–103.

    Google Scholar 

  18. Stetter, K. O. (1996). Hyperthermophiles in the history of life. Paper presented at the Ciba Foundation Symposium 202-Evolution of Hydrothermal Ecosystems on Earth (And Mars?).

  19. Frock, A. D., Notey, J. S., & Kelly, R. M. (2010). The genus Thermotoga: recent developments. Environmental Technology, 31, 1169–1181.

    Article  CAS  Google Scholar 

  20. Kang, J., Kyung, M. P., Kyoung, H. C., Cheon, S. P., Go, E. K., Doman, K., & Jaeho, C. (2011). Molecular cloning and biochemical characterization of a heat-stable type I pullulanase from Thermotoga neapolitana. Enzyme and Microbial Technology, 48, 260–266.

    Article  CAS  Google Scholar 

  21. Lim, W. J., Park, S. R., An, C. L., Lee, J. Y., Hong, S. Y., Shin, E. C., & Yun, H. D. (2003). Cloning and characterization of a thermostable intracellular α-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Research in Microbiology, 154, 681–687.

    Article  CAS  Google Scholar 

  22. Takahata, Y., Nishijima, M., Hoaki, T., & Maruyama, T. (2001). Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. International Journal of Systematic and Evolutionary Microbiology, 51(5), 1901–1909.

    Article  CAS  Google Scholar 

  23. Cohen, S. N., Chang, A. C., & Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences, 69, 2110–2114.

    Article  CAS  Google Scholar 

  24. Bimboim, H., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513–1523.

    Article  Google Scholar 

  25. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  27. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  28. Snedecor, G. W., & Cochrane, W. G. (1980). Statistical methods, 7th Ed. Ames, Iowa: Iowa State University Press. ISBN 0-81381560-6.

  29. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL Workspace: a web-based environment for protein structure homology modeling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  30. Chung, Y. C., Kobayashi, T., Kanai, H., Akiba, T., & Kudo, T. (1995). Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Applied and Environmental Microbiology, 61, 1502–1506.

    CAS  Google Scholar 

  31. Dheeran, P., Kumar, S., Jaiswal, Y. K., & Adhikari, D. K. (2010). Characterization of hyperthermostable α-amylase from Geobacillus sp. IIPTN. Applied Microbiology and Biotechnology, 86, 1857–1866.

    Article  CAS  Google Scholar 

  32. Khajeh, M. (2011). Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box-Behnken experimental design. The Journal of Supercritical Fluids, 55, 944–948.

    Article  CAS  Google Scholar 

  33. Matsuzaki, H., Yamane, K., Yamaguchi, K., Nagata, Y., & Maruo, B. (1974). Hybrid α-amylases produced by transformants of Bacillus subtilis. I. Purification and characterization of extracellular α-amylases produced by the parental strains and transformants. Biochimica et Biophysica Acta (BBA)-Protein Structure, 365, 235–247.

    Article  CAS  Google Scholar 

  34. Yang, C. H., & Wen-Hsiung, L. (2003). Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enzyme and Microbial Technology, 35, 254–260.

    Article  Google Scholar 

  35. Sidhu, G., Sharma, P., Chakrabarti, T., & Gupta, J. (1997). Strain improvement for the production of a thermostable α-amylase. Enzyme and Microbial Technology, 21, 525–530.

    Article  CAS  Google Scholar 

  36. Fogarty, W. M., & Kelly, C. T. (1990). Recent advances in microbial amylases. In Microbial enzymes and biotechnology (pp. 71–132). Springer.

  37. Cheetham, P. S. J. (1980). Topics in enzyme and fermentation technology (p. 4). New York: Willey. chapter 6.

    Google Scholar 

  38. UpaDek, H., & Kottwitz, B. (1997). Application of amylases in detergents. In J. H. van Ee, O. Misset, & E. J Baas (Eds.). New York: Marcel Dekker.

  39. Wiseman, A. (1980). Topics in enzyme and fermentation technology (Vol. 4). New York: Willey.

    Google Scholar 

  40. Macleod, A. M. (1979). In J. R. A. Pollock (Ed.), Brewing Science. London: Academic Press. R.J., 1(146–232).

  41. Peppler, H. J., & Periman, D. (1978). Microbiological technology (2nd ed.). New York: Academic Press. Chapter 7–16.

    Google Scholar 

  42. Kathleen, T. A. A., T. (1996). Foundation in microbiology. USA: Brown Wm.c. 2nd edition (85).

  43. Choi, K. H., Hwang, S., Lee, H. S., & Cha, J. (2011). Identification of an extracellular thermostable glycosyl hydrolase family 13 α-amylase from Thermotoga neapolitana. The Journal of Microbiology, 49, 628–634.

    Article  CAS  Google Scholar 

  44. Galdino, A. S., Silva, R. N., Lottermann, M. T., Alvares, A. C. M., Moraes, L. M. P. D., Torres, F. A. G., & Ulhoa, C. J. (2011). Biochemical and structural characterization of amy1: an alpha-amylase from Cryptococcus flavus expressed in Saccharomyces cerevisiae. Enzyme Research, 2011, 1–7.

    Article  Google Scholar 

  45. Egas, M. C., da Costa, M. S., Cowan, D. A., & Pires, E. M. (1998). Extracellular α-amylase from Thermus filiformis Ork A2: purification and biochemical characterization. Extremophiles, 2, 23–32.

    Article  CAS  Google Scholar 

  46. Mollania, N., Khajeh, K., Hosseinkhani, S., & Dabirmanesh, B. (2010). Purification and characterization of a thermostable phytate resistant α-amylase from Geobacillus sp. LH8. International Journal of Biological Macromolecules, 46, 27–36.

    Article  CAS  Google Scholar 

  47. Tachibana, Y., Leclere, M. M., Fujiwara, S., Takagi, M., & Imanaka, T. (1996). Cloning and expression of the α-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. Journal of Fermentation and Bioengineering, 82, 224–232.

    Article  CAS  Google Scholar 

  48. Chandra, M. S., Mallaiah, K., Sreenivasulu, P., & Choi, Y. L. (2010). Purification and characterization of highly thermostable α-amylase from thermophilic Alicyclobacillus acidocaldarius. Biotechnology and Bioprocess Engineering, 15, 435–440.

    Article  Google Scholar 

  49. Liebl, W., Stemplinger, I., & Ruile, P. (1997). Properties and gene structure of the Thermotoga maritima alpha-amylase AmyA, a putative lipoprotein of a hyperthermophilic bacterium. Journal of Bacteriology, 179, 941–948.

    CAS  Google Scholar 

  50. Gandhi, S., Abu Bakar, S., Raja, N. Z. R. A. R., Thean, C. L., & Siti, N. O. (2015). Expression and characterization of Geobacillus stearothermophilus SR74 recombinant α-amylase in Pichia pastoris. Miomed Research International, 2015, 9.

    Google Scholar 

  51. Gomes, I., Gomes, J., & Steiner, W. (2003). Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresource Technology, 90, 207–214.

    Article  CAS  Google Scholar 

  52. Chivero, E. T., Mutukumira, A. N., & Zvauya, R. (2001). Partial purification and characterisation of a xylanase enzyme produced by a micro-organism isolated from selected indigenous fruits of Zimbabwe. Food Chemistry, 72, 179–185.

    Article  CAS  Google Scholar 

  53. Schumann, J., Alexander, W., Rainer, J., & Karl, O. S. (1991). Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritime. FEBS Letters, 282, 122–126.

    Article  CAS  Google Scholar 

  54. Park, K. M., So-Young, J., Kyoung-Hwa, C., Kwan-Hwa, P., Cheon-Seok, P., & Jaeho, C. (2010). Characterization of an exo-acting intracellular α-amylase from the hyperthermophilic bacteriumThermotoga neapolitana. Applied Microbiology and Biotechnology, 86, 555–556.

    Article  CAS  Google Scholar 

  55. Samie, N., Padma, R. M. R., & Masoumeh, A. (2011). Novel extracellular hyper acidophil and thermostable α-amylase from Micrococcus sp. NS 211. Starch-Stärke, 64, 136–144.

    Article  Google Scholar 

  56. Anupama, A., & Jayaraman, G. (2011). Detergent stable, halotolerant α-amylase from Bacillus aquimaris vitp4 exhibits reversible unfolding. International Journal of Applied Biology and Pharmaceutical Technology, 2, 366–376.

    Google Scholar 

  57. Knob, A., Beitel, S. M., Fortkamp, D., Terrasan, C. R. F., & Almeida, A. F. D. (2013). Production, purification, and characterization of a major Penicillium glabrum xylanase using Brewer’s spent grain as substrate. BioMed Research International, 2013, 1–8.

    Article  Google Scholar 

  58. Do, T. T., Quyen, T., & Dam, T. H. (2012). Purification and characterization of an acid-stable and organic solvent-tolerant xylanase from Aspergillus awamori VTCC-F312. ScienceAsia, 38, 157–165.

    Article  CAS  Google Scholar 

  59. Shafiei, M., Ziaee, A.-A., & Amoozegar, M. A. (2012). Purification and characterization of a halophilic α-amylase with increased activity in the presence of organic solvents from the moderately halophilic Nesterenkonia sp. strain F. Extremophiles, 16, 627–635.

    Article  CAS  Google Scholar 

  60. Almazo, J. Y. D., Alina, M., Agustin, L. M., Xavier, S., Fernando, G. M., & Gloria, S. R. (2008). Enhancement of the alcoholytic activity of α-amylase AmyA from Thermotoga maritima MSB8 (DSM 3109) by site-directed mutagenesis. Applied and Environmental Microbiology, 74, 165168–165177.

    Google Scholar 

  61. Ballschmiter, M., Fütterer, O., & Liebl, W. (2006). Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Applied and Environmental Microbiology, 72, 2206–2211.

    Article  CAS  Google Scholar 

  62. Paquet, V., Croux, C., Goma, G., & Soucaille, P. (1991). Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology, 57, 212–218.

    CAS  Google Scholar 

  63. Brzozowski, A. M., David, M. L., Johan, P. T., Henrik, B. F., Allan, S., Torben, V. B., Zbigniew, D., Keith, S. W., & Gideon, J. D. (2000). Structural analysis of a chimeric bacterial α-amylase. High-resolution analysis of native and ligand complexes. Biochemistry, 39, 9099–9910.

    Article  CAS  Google Scholar 

  64. Dickmanns, A., Meike, B., Wolfgang, L., & Ralf, F. (2005). Structure of the novel a-amylase AmyC from Thermotoga maritima. Acta Crystallographica, 2006, 262–270.

    Google Scholar 

  65. Aghajari, N., Georges, F., Charles, G., & Richard, H. (1997). Crystal structures of the psychrophilic a-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Science, 1998, 7564–7572.

    Google Scholar 

  66. Brayer, G. D., Yaoguang, L., & Stephen, G. W. (1995). The structure of human pancreatic a-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Science, 4, 1730–1742.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nauman Aftab.

Additional information

Asma Zafar and Muhammad Nauman Aftab contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1

(DOCX 111 kb)

Supplementary figure 2

(DOCX 1267 kb)

Supplementary figure 3

(DOCX 64 kb)

Supplementary figure 4

(DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, A., Aftab, M.N., ud Din, Z. et al. Cloning, Purification and Characterization of a Highly Thermostable Amylase Gene of Thermotoga petrophila into Escherichia coli . Appl Biochem Biotechnol 178, 831–848 (2016). https://doi.org/10.1007/s12010-015-1912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1912-8

Keywords

Navigation