Skip to main content

Advertisement

Log in

Mixed Substrate Fermentation for Enhanced Phytase Production by Thermophilic Mould Sporotrichum thermophile and Its Application in Beneficiation of Poultry Feed

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The optimum values of the critical variables determined by the central composite design of response surface methodology (RSM) for maximum phytase production (1881.26 U g−1 dry mouldy residue (DMR)) by Sporotrichum thermophile are 2.5 % Tween 80, 1.0 % yeast extract and 48 h of incubation period. Phytase production in the mixed substrate (sugarcane bagasse and wheat bran) fermentation enhanced 11.6-fold over the initial production as a consequence of optimization. Phytase titres are sustainable in flasks, trays and column bioreactor (1796 to 2095 U g−1 DMR), thus validating the model and the process for large-scale phytase production. When the yeast extract was replaced with corn steep liquor (2 % w/v), a sustained enzyme titre (1890 U g−1 DMR) was attained, making the process cost-effective. Among all the detergents, Tween 80 supported a higher phytase production than others. The enzyme efficiently liberated nutritional components from poultry feed (inorganic phosphate, soluble protein and reducing sugars) in a time-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vohra, A., & Satyanarayana, T. (2003). Phytases: microbial sources, production, purification, and potential biotechnological applications. Critical Reviews in Biotechnology, 23, 29–60.

    Article  CAS  Google Scholar 

  2. Vats, P., & Banerjee, U. C. (2004). Production studies and catalytic properties of phytases (myoinositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology, 35, 3–14.

    Article  CAS  Google Scholar 

  3. Singh, B., & Satyanarayana, T. (2011). Phytases from thermophilic molds: their production, characteristics and multifarious applications. Process Biochemistry, 46(7), 1391–1398.

    Article  CAS  Google Scholar 

  4. Singh, B., & Satyanarayana, T. (2015). Fungal phytases: characteristics and amelioration of nutritional quality and growth of non ruminants. Journal of Animal Physiology and Animal Nutrition, 99, 646–660.

    Article  CAS  Google Scholar 

  5. Nampoothiri, K. M., Tomes, G. J., Roopesh, K., Szakaces, G., Nagy, Y., Soccol, C. R., & Panday, A. (2004). Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Applied Biochemistry and Biotechnology, 118(1–3), 205–214.

    Article  CAS  Google Scholar 

  6. Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid state fermentation for the production of industrial enzymes. Current Science, 77, 149–162.

    CAS  Google Scholar 

  7. Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161.

    Article  CAS  Google Scholar 

  8. Bogar, B., Szakacs, G., Linden, J. C., Pandey, A., & Tengerdy, R. P. (2003). Optimization of phytase production by solid substrate fermentation. Journal of Industrial Microbiology and Biotechnology, 30(3), 183–189.

    Article  CAS  Google Scholar 

  9. Bogar, B., Szakacs, G., Pandey, A., Abdulhameed, S., Linden, J. C., & Tengerdy, R. P. (2003). Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnology Progress, 9(2), 312–319.

    Article  Google Scholar 

  10. Chadha, B. S., Gulati, H., Minhas, M., Saini, H. S., & Singh, N. (2004). Phytase production by the thermophilic fungus Rhizomucor pusillus. World Journal of Microbiology and Biotechnology, 20, 105–109.

    Article  CAS  Google Scholar 

  11. Singh, B., & Satyanarayana, T. (2006). Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Applied Biochemistry and Biotechnology, 133, 239–250.

    Article  CAS  Google Scholar 

  12. Singh, B., & Satyanarayana, T. (2008). Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresource Technology, 99, 2824–2830.

    Article  CAS  Google Scholar 

  13. Maller, A., Vici, C. A., Facchini, A. D. F., Silva, M. T., Kamimura, S. E., Rodrigues, I. M., Jorge, A. J., Terenzi, F. H., & Polizeli, M. T. L. M. (2013). Increase of the phytase production by Aspergillus japonicas and its biocatalyst on chicken feed treatment. Journal of Basic Microbiology, 53, 1–9.

    Article  Google Scholar 

  14. Bala, A., Sapna, Jain, J., Kumari, A., & Singh, B. (2014). Production of an extracellular phtyase from a thermophillic mould Humicola nigrescens in solid state fermentation and its application in dephytinization. Biocatalysis and Agricultural Biotechnology, 3, 259–264.

    Article  Google Scholar 

  15. Sapna, & Singh, B. (2014). Phytase production by Aspergillus oryzae in solid–state fermentation and its applicability in dephyinization of wheat ban. Applied Biochemistry and Biotechnology, 173(7), 1885–1895.

    Article  CAS  Google Scholar 

  16. Emerson, R. (1941). An experimental study of life cycle and taxonomies of Allomyces. Lloydia, 4, 77–144.

    Google Scholar 

  17. Sharma, M., Chadha, B. S., Kaur, M., Ghatora, S. K., & Saini, H. S. (2008). Molecular characterization of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials. Letters in Applied Microbiology, 46(5), 526–535.

    Article  CAS  Google Scholar 

  18. Fiske, C. H., & Subbarow, Y. (1925). The colorimetic determination of phosphorus. Journal of Biological Chemistry, 66, 376–400.

    Google Scholar 

  19. Miller, G. L. (1959). Use of dinitrosalicyclic reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactor experiments. Biometrika, 33, 305–325.

    Article  Google Scholar 

  22. Sapna, & Singh, B. (2013). Improved production of protease- resistant phytase by Aspergillus oryzae and its applicability in the hydrolysis of insoluble phytates. Journal of Industrial Microbiology and Biotechnology, 40(8), 891–899.

    Article  CAS  Google Scholar 

  23. Sharma, K. K., Kapoor, M., & Kuhad, R. C. (2005). In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Letters in Applied Microbiology, 41, 24–31.

    Article  CAS  Google Scholar 

  24. Lawford, H. G., & Rousseau, J. D. (1997). Corn Steep liquor as a cost-effective nutrition adjunct in high performance Zymomonas ethanol fermentations. Applied Biochemistry and Biotechnology, 63–65, 287–304.

    Article  Google Scholar 

  25. Ghareib, M. (1990). Biosynthesis, purification and some properties of extracellular phytase from Aspergillus carneus. Acta Microbiologica Hungarica, 37(2), 159–164.

    CAS  Google Scholar 

  26. Gomes, J. E. G., da Silva Nascimento, T. C. E., de França Queiroz, A. E. S., de Siqueira Silva Júnior, J. I., de Souza-Motta, C. M., de Medeiros, E. V., & Moreira, K. A. (2014). Production, characterization and evaluation of in vitro digestion of phytases, xylanases and cellulases for feed industry. African Journal of Microbiology Research, 8(6), 551–558.

    Article  Google Scholar 

  27. Mandviwala, T. N., & Khire, J. M. (2000). Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. Journal of Industrial Microbiology and Biotechnology, 24, 237–243.

    Article  CAS  Google Scholar 

  28. Bhavsar, K., Kumar, V. R., & Khire, J. M. (2011). High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. Journal of Industrial Microbiology and Biotechnology, 38, 1407–1417.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance (BT/PR4771/PID/6/636/2012) from the Department of Biotechnology (DBT), Govt. of India, New Delhi, during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Satyanarayana, T. & Singh, B. Mixed Substrate Fermentation for Enhanced Phytase Production by Thermophilic Mould Sporotrichum thermophile and Its Application in Beneficiation of Poultry Feed. Appl Biochem Biotechnol 178, 197–210 (2016). https://doi.org/10.1007/s12010-015-1868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1868-8

Keywords

Navigation