Skip to main content
Log in

Enhanced 3β,7α,15α-Trihydroxy-5-Androsten-17-One Production from Dehydroepiandrosterone by Colletotrichum lini ST-1 Resting Cells with Tween-80

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

7α,15α-diOH-DHEA is a key precursor of the novel oral contraceptive Yasmin. Colletotrichum lini could catalyze dehydroepiandrosterone (DHEA) at the 7α and 15α positions. In this work, C. lini resting cells were applied in the bioconversion of DHEA to 7α,15α-diOH-DHEA. In the presence of 2 % (w/v) Tween-80, the conversion efficiency of DHEA increased drastically. The DHEA conversion and the 7α,15α-diOH-DHEA yield increased by 34.6 and 87.0 %, respectively, at the DHEA concentration of 10 g/L. Furthermore, the effects of Tween-80 on substrate solubility and C. lini physiological properties were studied. Results showed that the DHEA solubility with 2 % Tween-80 increased by 7.8 times. Meanwhile, the mycelia were integrated and full in the presence of 2 % Tween-80. The analysis on fatty acid profile of the C. lini cell membrane indicated that Tween-80 increases the content of unsaturated fatty acid. All above results suggested that the enhanced product yield caused by Tween-80 was mainly associated with easier substrate-molecule transportation across the cell membrane of C. lini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maser, E., & Rizner, T. L. (2012). Steroids and microorganisms. Journal of Steroid Biochemistry and Molecular Biology, 129, 1–3.

    Article  CAS  Google Scholar 

  2. Woodley, J. M. (2008). New opportunities for biocatalysis: making pharmaceutical processes greener. Trends in Biotechnology, 26, 321–327.

    Article  CAS  Google Scholar 

  3. Donova, M. V. (2007). Transformation of steroids by actinobacteria: a review. Applied Biochemistry and Microbiology, 43, 1–14.

    Article  CAS  Google Scholar 

  4. Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: current state and prospects. Applied Microbiology and Biotechnology, 94, 1423–1447.

    Article  CAS  Google Scholar 

  5. Kristan, K., & Rizner, T. L. (2012). Steroid-transforming enzymes in fungi. Journal of Steroid Biochemistry and Molecular Biology, 129, 79–91.

    Article  CAS  Google Scholar 

  6. Janeczko, T., Gładysz, J. D., Susłow, E. K., Białonska, A., & Ciunik, Z. (2009). Biotransformations of steroid compounds by Chaetomium sp. KCH 6651. Steroids, 74, 657–661.

    Article  CAS  Google Scholar 

  7. Zhang, S., Liu, P. H., Zhao, L., & Liu, X. L. (2014). Hydroxylation of dehydroepiandrosterone by Penicillium decumbens ph-13. Lecture Notes in Electrical Engineering, 251, 1393–1398.

    Article  Google Scholar 

  8. Lobastova, T. G., Gulevskaya, S. A., Sukhodolskaya, G. V., & Donova, M. V. (2009). Dihydroxylation of dehydroepiandrosterone in positions 7α and 15α by mycelial fungi. Applied Biochemistry and Microbiology, 45, 617–622.

    Article  CAS  Google Scholar 

  9. Li, H., Fu, Z. Z., Zhang, X. M., Li, H., Shi, J. S., & Xu, Z. H. (2014). The efficient production of 3β,7α,15α-trihydroxy-5-androsten-17-one from dehydroepiandrosterone by Gibberella intermedia. Applied Biochemistry and Biotechnology, 174, 2960–2971.

    Article  CAS  Google Scholar 

  10. Grishko, V. V., Tarasova, E. V., & Ivshina, I. B. (2013). Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochemistry, 48, 1640–1644.

    Article  CAS  Google Scholar 

  11. Li, X. F., Jiang, B., & Pan, B. L. (2007). Biotransformation of phenylpyruvic acid to phenyllactic acid by growing and resting cells of a Lactobacillus sp. Biotechnology Letters, 29, 593–597.

    Article  CAS  Google Scholar 

  12. Goetschel, R., & Bar, R. (1992). Formation of mixed crystals in microbial conversion of sterols and steroids. Enzyme and Microbial Technology, 14, 462–469.

    Article  CAS  Google Scholar 

  13. Marques, M. P. C., Carvalho, F., Magalhães, S., Cabral, J. M. S., & Fernandes, P. (2009). Screening for suitable solvents as substrate carriers for the microbial side-chain cleavage of sitosterol using microtitre plates. Process Biochemistry, 44, 556–561.

    Article  CAS  Google Scholar 

  14. Zehentgruber, D., Dragan, C. A., Bureik, M., & Lutz, S. (2010). Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. Journal of Biotechnology, 146, 179–185.

    Article  CAS  Google Scholar 

  15. Folch, J., Lees, M., & Sloane-stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 19, 145–149.

    Google Scholar 

  16. Romano, A., Romano, D., Ragg, E., Costantino, F., Lenna, R., Gandolfi, R., & Molinari, F. (2006). Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini. Steroids, 71, 429–434.

    Article  CAS  Google Scholar 

  17. Avramova, T., Spassova, D., Mutafov, S., Momchilova, S., Boyadjieva, L., Damyanova, B., & Angelova, B. (2010). Effect of Tween 80 on 9α-steroid hydroxylating activity and ultrastructural characteristics of Rhodococcus sp. cells. World Journal of Microbiology and Biotechnology, 26, 1009–1014.

    Article  CAS  Google Scholar 

  18. Sheng, L., Zhu, G. L., & Tong, Q. Y. (2013). Mechanism study of Tween 80 enhancing the pullulan production by Aureobasidium pullulans. Carbohydrate Polymers, 97, 121–123.

    Article  CAS  Google Scholar 

  19. Zhang, B. B., Chen, L., & Cheung, P. C. K. (2012). Two-dimensional gel electrophoresis analysis of mycelial cells treated with Tween 80: differentially expressed protein related to enhanced metabolite production. Journal of Agricultural and Food Chemistry, 60, 10585–10591.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National High-Tech R&D Program (No. 2011AA02A211), the National Natural Science Foundation of China (No. 31300026), and the Natural Science Foundation of Jiangsu Province (No. BK2012117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Xu.

Additional information

Hui Li and Siqi Yin have equal contributions to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yin, S., Zhang, X. et al. Enhanced 3β,7α,15α-Trihydroxy-5-Androsten-17-One Production from Dehydroepiandrosterone by Colletotrichum lini ST-1 Resting Cells with Tween-80. Appl Biochem Biotechnol 178, 91–100 (2016). https://doi.org/10.1007/s12010-015-1860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1860-3

Keywords

Navigation