Skip to main content

Advertisement

Log in

Investigating Cellular Responses During Photohydrogen Production by the Marine Microalga Tetraselmis subcordiformis by Quantitative Proteome Analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The marine microalga Tetraselmis subcordiformis could photoproduce hydrogen under the regulation of carbonyl cyanide m-chlorophenylhydrazone (CCCP), and a hydrogen production process kinetic analysis was characterized by two peaks, suggesting that two distinct mechanisms might exist in this alga. Therefore, 2D nanoliquid chromatography−tandem mass spectrometry (LC-MS/MS) was introduced to analyze the proteome of samples from different time points. A total of 912 proteins were identified, providing a global view of the cellular responses at the proteomic level. These proteins can be divided into multiple functional groups including stress responses, energy metabolism and redox homeostasis. The quantitative proteomic data provided more details on the electron donors for hydrogen production. During the first stage, photosystem II produced electrons for hydrogen production; during the second stage, metabolites were the major electron donors via nonphotochemical plastoquinone reduction by NADH dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Skjånes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33, 172–215.

    Article  Google Scholar 

  2. Guan, Y., Zhang, W., Deng, M., Jin, M., & Yu, X. (2004). Significant enhancement of photobiological H2 evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis. Biotechnology Letters, 26, 1031–1035.

    Article  CAS  Google Scholar 

  3. Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–136.

    Article  CAS  Google Scholar 

  4. Batyrova, K. A., Tsygankov, A. A., & Kosourov, S. N. (2012). Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. International Journal of Hydrogen Energy, 37, 8834–8839.

    Article  CAS  Google Scholar 

  5. Appel, J., & Schulz, R. (1998). Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? Journal of Photochemistry Photobiology Series B, 47, 1–11.

    Article  CAS  Google Scholar 

  6. Chen, M., Zhao, L., Sun, Y. L., Cui, S. X., Zhang, L. F., Yang, B., Wang, J., Kuang, T. Y., & Huang, F. (2010). Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Journal of Proteome Research, 9, 3854–3866.

    Article  CAS  Google Scholar 

  7. Terashima, M., Specht, M., Naumann, B., & Hippler, M. (2010). Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Molecular & Cellular Proteomics, 9, 1514–1532.

    Article  CAS  Google Scholar 

  8. Yang, D., Zhang, Y., Barupal, D. K., Fan, X., Gustafson, R., Guo, R., & Fiehn, O. (2014). Metabolomics of photobiological hydrogen production induced by CCCP in Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 39, 150–158.

    Article  CAS  Google Scholar 

  9. Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S. R., Doebbe, A., Kruse, O., Hankamer, B., Marx, U., Smith, S. M., & Schenk, P. M. (2009). The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. The Journal of Biological Chemistry, 284, 23415–23425.

    Article  CAS  Google Scholar 

  10. Catalanotti, C., Yang, W., Posewitz, M. C., & Grossman, A. R. (2013). Fermentation metabolism and its evolution in algae. Front Plant Science, 4, 150.

    Article  Google Scholar 

  11. Renger, G. (1972). The action of 2-anilinothiophenes as accelerators of the deactivation reactions in the watersplitting enzyme system of photosynthesis. Biochimica et Biophysica Acta, 256, 428–439.

    Article  CAS  Google Scholar 

  12. Ran, C., Yu, X., Jin, M., & Zhang, W. (2006). Role of carbonyl cyanide m-chlorophenyl hydrazone in enhancing photobiological hydrogen production by marine green alga Platymonas subcordiformis. Biotechnology Progress, 22, 438–443.

    Article  CAS  Google Scholar 

  13. Ji, C., Legrand, J., Pruvost, J., Chen, Z., & Zhang, W. (2010). Characterization of hydrogen production by Platymonas subcordiformis in torus photobioreactor. International Journal of Hydrogen Energy, 35, 7200–7205.

    Article  CAS  Google Scholar 

  14. Degrenne, B., Pruvost, J., Titica, M., Takache, H., & Legrand, J. (2011). Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii. Part II: Definition of model-based protocols and experimental validation. Biotechnology and Bioengineering, 108, 2288–2299.

    Article  CAS  Google Scholar 

  15. Ji, C., Cao, X., Yao, C., Xue, S., & Xiu, Z. (2014). Protein–protein interaction network of the marine microalga Tetraselmis subcordiformis: prediction and application for starch metabolism analysis. Journal of Industrial Microbiology & Biotechnology, 41, 1287–1296.

    Article  CAS  Google Scholar 

  16. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., & Heck, A. J. R. (2009). Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols, 4, 484–494.

    Article  CAS  Google Scholar 

  17. Wang, F., Dong, J., Jiang, X., Ye, M., & Zou, H. (2007). Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis. Analytical Chemistry, 79, 6599–6606.

    Article  CAS  Google Scholar 

  18. Cao, X., Wu, X., Ji, C., Yao, C., Chen, Z., Li, G., & Xue, S. (2014). Comparative transcriptional study on the hydrogen evolution of marine microalga Tetraselmis subcordiformis. International Journal of Hydrogen Energy, 39, 18235–18246.

    Article  CAS  Google Scholar 

  19. van Breukelen, B., van den Toorn, H. W. P., Drugan, M. M., & Heck, A. J. R. (2009). StatQuant: a post-quantification analysis toolbox for improving quantitative mass spectrometry. Bioinformatics, 25, 1472–1473.

  20. Ji, C., Xu, X., Xue, S., Chen, Z., & Zhang, W. (2011). Electron transport pathways of hydrogen photobiological production metabolism in CCCP-treated Tetraselmis subcordiformis. Microbiology China, 38, 1666–1672.

    CAS  Google Scholar 

  21. Yamamoto, Y., Aminaka, R., Yoshioka, M., Khatoon, M., Komayama, K., Takenaka, D., Yamashita, A., Nijo, N., Inagawa, K., Morita, N., Sasaki, T., & Yamamoto, Y. (2008). Quality control of photosystem II: impact of light and heat stresses. Photosynthesis Research, 98, 589–608.

    Article  CAS  Google Scholar 

  22. Suorsa, M., Sirpiö, S., Allahverdiyeva, Y., Paakkarinen, V., Mamedov, F., Styring, S., & Aro, E. M. (2006). PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. The Journal of Biological Chemistry, 281, 145–150.

    Article  CAS  Google Scholar 

  23. Ji, C., Yu, X., Chen, Z., Xue, S., Legrand, J., & Zhang, W. (2011). Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis. International Journal of Hydrogen Energy, 36, 5817–5821.

    Article  CAS  Google Scholar 

  24. Dubini, A., Mus, F., Seibert, M., Grossman, A. R., & Posewitz, M. C. (2009). Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. The Journal of Biological Chemistry, 284, 7201–7213.

    Article  CAS  Google Scholar 

  25. Marshansky, V., & Futai, M. (2008). The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Current Opinion in Cell Biology, 20, 415–426.

    Article  CAS  Google Scholar 

  26. Karpinski, S., Escobar, C., Karpinska, B., Creissen, G., & Mullineaux, P. M. (1997). Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. The Plant Cell Online, 9, 627–640.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ningbo Natural Science Foundation of China (2011A610028).

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Xue.

Additional information

Chaofan Ji and Xupeng Cao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 247 kb)

Fig. S1

Relative abundance of photosystem (A) and Calvin cycle (B) proteins from T. subcordiformis. Relative ratios of differentially expressed proteins were calculated between samples from S1-S3 and control. The value equals to fold change of the protein expression,which was calculated as log2(ratio). The enzyme designations are: PetA for apocytochrome f; PetB for cytochrome b6; PetC for cytochrome b6-f complex iron-sulfur subunit; PetD for cytochrome b6-f complex subunit 4; FNR for ferredoxin--NADP+ reductase; ATPF0A-1G for different F-type H+-transporting ATPase subunits; PsaA-L for different photosystem I subunits; PsbA-R for different photosystem II subunits; ALT for alanine transaminase; ASP for aspartate aminotransferase; PBP for fructose-1,6-bisphosphatase; FBA for fructose-bisphosphate aldolase; GAPDH for glyceraldehyde 3-phosphate dehydrogenase; MDH for malate dehydrogenase; PGK for phosphoglycerate kinase; prkB for phosphoribulokinase; PK for pyruvate kinase; PPDK for pyruvate, orthophosphate dikinase; RPIA for ribose 5-phosphate isomerase A; RBCL/S for ribulose-bisphosphate carboxylase large/small chain; RPE for ribulose-phosphate 3-epimerase; SBPASE for sedoheptulose-bisphosphatase; TKTL for transketolase; TIM for triosephosphate isomerase. (GIF 3 kb)

High resolution image (TIFF 901 kb)

Fig. S2

Relative abundance of starch metabolism (A) and glycolysis (B) proteins from T. subcordiformis. The enzyme designations are: AGL for 4-alpha-glucanotransferase; AGPase for glucose-1-phosphate adenylyltransferase; amyA for alpha-amylase; FK for fructokinase; GK for glucokinase; GPI for glucose-6-phosphate isomerase; PGM for phosphoglucomutase; PYG for starch phosphorylase; SS for starch synthase; ACSS for acetyl-CoA synthetase; ADH for alcohol dehydrogenase; DLD for dihydrolipoamide dehydrogenase; ENO for enolase; FBA for fructose-bisphosphate aldolase; G6PE for glucose-6-phosphate 1-epimerase; NQR for NADPH2:quinone reductase; PFK for 6-phosphofructokinase; PGAM for phosphoglycerate mutase. (GIF 2 kb)

High resolution image (TIFF 992 kb)

Fig. S3

Relative abundance of fermentation and TCA proteins from T. subcordiformis. The enzyme designations are: DLST for dihydrolipoamide succinyltransferase; PC for pyruvate carboxylase; SDH for succinate dehydrogenase; PFL for formate C-acetyltransferase; OGDH for 2-oxoglutarate dehydrogenase; DLD for dihydrolipoamide dehydrogenase; CS for citrate synthase; ACO for aconitate hydratase; LSC for succinyl-CoA synthetase. (GIF 1 kb)

High resolution image (TIFF 496 kb)

Fig. S4

Relative abundance of oxidative phosphorylation (A) and redox related (B) proteins from T. subcordiformis. The enzyme designations are: ATP(e)F for F-type H+-transporting ATPase subunits; PPA for inorganic pyrophosphatase; SEPHS for selenide, water dikinase; UQCRFS for ubiquinol-cytochrome c reductase; ATPeV for V-type H+-transporting ATPase subunit; FNR for ferredoxin--NADP+ reductase; GRX for glutaredoxin; PRX for peroxiredoxin; TRX for thioredoxin; APR for adenylyl-sulfate reductase; gshB for glutathione synthase; GSH for hydroxyacylglutathione hydrolase; ECM4 for putative glutathione S-transferase; GST for glutathione S-transferase; GPX for glutathione peroxidase; glutathione reductase for GR; NDH for NADH dehydrogenase; NDUFS for NADH dehydrogenase (ubiquinone) Fe-S protein; NDUFV for NADH dehydrogenase (ubiquinone) flavoprotein; NDUFA/B for NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex. (GIF 3 kb)

High resolution image (TIFF 885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Cao, X., Liu, H. et al. Investigating Cellular Responses During Photohydrogen Production by the Marine Microalga Tetraselmis subcordiformis by Quantitative Proteome Analysis. Appl Biochem Biotechnol 177, 649–661 (2015). https://doi.org/10.1007/s12010-015-1769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1769-x

Keywords

Navigation