Skip to main content
Log in

Green Synthesis of Silver Nano-particles by Macrococcus bovicus and Its Immobilization onto Montmorillonite Clay for Antimicrobial Functionality

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Macrococcus bovicus was locally isolated from soil and used in the green synthesis of nano-scaling silver (NSAg). It was immobilized on a sodic-montmorillonite clay (MMT1) and cetyltrimethylammonium bromide-modified montmorillonite (MMT2) which was also calcined at 300 °C (MMT3). The NSAg clays were characterized by X-ray fluorescence, Fourier transform infrared spectra, X-ray diffractometry, surface area measurement, UV–Vis spectrometry, scanning electron microscope, transmission electron microscope and thermogravimetric analysis. NSAg was confirmed to be included in the interparticular cavities of the clay sheets and its mechanical stability was evidenced. The antimicrobial activity of the NSAg-modified clays was investigated against Staphylococcus aureus, Escherichia coli and Candida albicans using the cup plate and the plate count techniques. The antimicrobial activity of the NSAg clays was confirmed and attributed to the caging of NSAg in MMT cavities. MMT3 was found to inhibit the microbial growth to as high as 65 % as observed from the plate count method.

Scheme of the biosynthesis of nano-scaling Ag and its immobilization and antimicrobial application

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. UN (2013b). Statistical annex: millennium development goals, targets and indicators. http://unstats.un.org/unsd/mdg/Default.aspx. Accessed 24 Mar 2014.

  2. Guidelines for Drinking-water Quality (2008). Incorporating the first and second addenda, recommendations (pp 121, 1) (Third ed., ). Geneva:WHO.

    Google Scholar 

  3. Obasohan, E. E., Agbonlahor, D. E., & Obano, E. E. (2010). Water pollution: a review of microbial quality and health concerns of water, sediment and fish in the aquatic ecosystem. African Journal of Biotechnology, 9(4), 423–427.

    Google Scholar 

  4. Osman, G. A., Hassan, H. M., & Kamel, M. M. (2011). Resistance and sensitivity of some bacterial strains isolated from hospital wastewater and Nile water using chlorination and some antibiotics in Cairo (Egypt). Journal of American Science, 7(9), 1033–1041.

    Google Scholar 

  5. Khandelwal, N., Kaur, G., Kumara, N., & Tiwari, A. (2014). Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Digest Journal of Nanomaterials and Biostructures, 9, 175–186.

  6. Rispail, N., De Matteis, L., Santos, R., Miguel, A. S., Custardoy, L., Testillano, P. S., Risueño, M. C., Pérez-de-Luque, A., Maycock, C., Fevereiro, P., Oliva, A., Fernández-Pacheco, R., Ibarra, M. R., de la Fuente, J. M., Marquina, C., Rubiales, D., & Prats, E. (2014). Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Applied Materials & Interfaces, 6(12), 9100–9110.

  7. Swain, P., Nayak, S. K., Sasmal, A., Behera, T., Barik, S. K., Swain, S. K., Mishra, S. S., Sen, A. K., Das, J. K., & Jayasankar, P. (2014). Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World Journal of Microbiology and Biotechnology, 30, 2491–2502.

    Article  CAS  Google Scholar 

  8. Rizzello, L., Cingolani, R., & Pompa, P. P. (2013). Nanotechnology tools for antibacterial materials. Nanomedicine, 8(5), 807–821.

    Article  CAS  Google Scholar 

  9. Velázquez-Velázquez, J. L., Santos-Flores, A., Araujo-Meléndez, J., Sánchez-Sánchez, R., Velasquillo, C., González, C., Martínez-Castañon, G., & Martinez-Gutierrez, F. (2015). Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Materials Science and Engineering: C, 49, 604–611.

    Article  Google Scholar 

  10. Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers, S., De Jong, W. H., Van Zijverden, M., Sips, A. J., & Geertsma, R. E. (2009). Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Anotoxicology, 3(2), 109–138.

    Article  CAS  Google Scholar 

  11. Freire, P. L. L., Stamford, T. C. M., Albuquerque, A. J. R., Sampaio, F. C., Cavalcante, H. M. M., Macedo, R. O., Galembeck, A., Flores, M. A. P., & Rosenblatt, A. (2015). Action of silver nanoparticles towards biological systems: cytotoxicity evaluation using hen’s egg test and inhibition of Streptococcus mutans biofilm formation. International Journal of Antimicrobial Agents, 45, 183–187.

    Article  CAS  Google Scholar 

  12. Tolaymat, T., El Badawy, A., Genaidy, A., Scheckel, K., Luxton, T., & Suidan, M. (2010). An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. The Science of the Total Environment, 408(5), 999–1006.

    Article  CAS  Google Scholar 

  13. Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P., & Alasubramanya, A. (2007). Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir, 23, 7113–7117.

    Article  CAS  Google Scholar 

  14. Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65, 150–153.

    Article  CAS  Google Scholar 

  15. Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160–164.

    Article  CAS  Google Scholar 

  16. Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19, 075103.

    Article  CAS  Google Scholar 

  17. Khan, M., Khan, M., Adil, S. F., Tahir, M. N., Tremel, W., Alkhathlan, H. Z., Al-Warthan, A., & Siddiqui, M. R. (2013). Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, 8, 1507–1516.

    Google Scholar 

  18. Kovvuru, P., Mancilla, P. E., Shirode, A. B., Murray, T. M., Begley, T. J., & Reliene, R. (2014). Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues, oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Nanotoxicology. doi:10.3109/17435390.2014.902520.

    Google Scholar 

  19. Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11, 77–89.

    Article  CAS  Google Scholar 

  20. El Badawy, A., Luxton, T., Silva, R., Scheckel, K., Suidan, M., & Tolaymat, T. (2010). Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of NSAg suspensions. Environmental Science & Technology, 44(4), 1260–1266.

    Article  Google Scholar 

  21. Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology, 42, 4133–4139.

    Article  CAS  Google Scholar 

  22. Shameli, K., Ahmad, M. B., Yunus, W. M. W., Ibrahim, N. A., Gharayebi, Y., & Sedaghat, S. (2010). Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. International Journal of Nanomedicine, 5, 1067–1077.

    CAS  Google Scholar 

  23. Lavorgna, M., Attianese, I., Buonocore, G. G., Conte, A., Del Nobile, M. A., Tescione, F., & Amendola, E. (2014). MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydrate Polymers, 102, 385–392.

    Article  CAS  Google Scholar 

  24. Tian, L., Oulian, L., Zhiyuan, L., Liuimei, H., & Xiaosheng, W. (2014). Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid. Applied Surface Science, 305, 386–395.

    Article  Google Scholar 

  25. Gillott, J. E. (1968). Clay in engineering geology, (Chapter 5) (1st ed., ). Amsterdam:Elsevier.

    Google Scholar 

  26. Vazquez, A., López, M., Kortaberria, G., Martín, L., & Mondragon, I. (2008). Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Applied Clay Science, 41, 24–36.

    Article  CAS  Google Scholar 

  27. Srinivasan, D., Nathan, S., Suresh, T., & Lakshmana, P. P. (2001). Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. Journal of Ethnopharmacology, 74, 217–220.

    Article  CAS  Google Scholar 

  28. Gupta, D., Khare, S. K., & Laha, A. (2004). Antimicrobial properties of natural dyes against Gram-negative bacteria. Coloration Technology, 120, 167–171.

    Article  CAS  Google Scholar 

  29. Duhan, S., Devi, S., & Kumar, S. (2010). Synthesis of composite based on nano sized silver particles hosted on silica networks. International Journal of Electrical Engineering, 2(1), 225–228.

    Google Scholar 

  30. Mie, G. (1908). Beiträge zur Optik trȕber Medien, speziell kolloidaler Metallosȕngen. Annalen der Physik, 25, 377.

    Article  CAS  Google Scholar 

  31. Wang, H., Law, N., Pearson, G., van Dongen, B. E., Jarvis, R. M., Goodacre, R., & Lloyd, J. R. (2010). Impact of silver (I) on the metabolism of Shewanella oneidensis. Journal of Bacteriology, 192(4), 1143–1150.

    Article  CAS  Google Scholar 

  32. Zhu, J., Zhu, L., Zhu, R., & Chen, B. (2008). Microstructure of organobentonites in water and the effect of steric hindrance on the uptake of organic compounds. Clays and Clay Minerals, 56(2), 144–154.

    Article  CAS  Google Scholar 

  33. (1995) Composition and mineralogy of clay minerals. In: B. Velde (Ed.), Origin and mineralogy of clays (pp. 27–33). Berlin: Springer-Verlag.

  34. Lagaly, G., Ogawa, M., & Dekany, I. (2006). Clay mineral organic interactions. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science (pp. 309–377). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  35. He, H., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., & Kloprogge, J. T. (2006). Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262–271.

    Article  CAS  Google Scholar 

  36. Grim, R. E. (1968). Clay mineralogy (p. 288). New York, USA:Mc Graw Hill Company.

    Google Scholar 

  37. Ferraro, J. R. (1982). The Sadtler infrared spectra handbook of minerals and clays (pp. 354–356). Philadelphia, Pennsylvania:Sadtler Research Laboratories.

    Google Scholar 

  38. Letaief, S., Casal, B., Aranda, P., Martín-Luengo, M. A., & Ruiz-Hitzky, E. (2003). Fe-containing pillared clays as catalysts for phenol hydroxylation. Applied Clay Science, 22, 263–277.

    Article  CAS  Google Scholar 

  39. Lambert, J. B., Shurvell, H. F., Lighter, D. A., & Cooks, R. G. (1998). Organic structural spectroscopy. New Jersey:Prentise-Hall.

    Google Scholar 

  40. Fatimah, I., & Huda, T. (2013). Preparation of cetyltrimethylammonium intercalated Indonesian montmorillonite for adsorption of toluene. Applied Clay Science, 74, 115–120.

    Article  CAS  Google Scholar 

  41. Harris, D. J., Bonagamba, T. J., & Schmidt-Rohr, K. (1999). Conformation of poly(ethylene oxide) intercalated in clay and MoS2 studied by two-dimensional double-quantum NMR. Macromolecules, 32, 6718–6724.

    Article  CAS  Google Scholar 

  42. Xie, W., Gao, Z., Pan, W., Huner, D., Singh, A., & Vaia, R. (2001). Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13(9), 2979–2990.

    Article  CAS  Google Scholar 

  43. Zhu, Z. J., Wang, T., Zhu, R., Ge, F., Yuan, P., & He, H. (2011). Expansion characteristics of organo montmorillonites during the intercalation, aging, drying and rehydration processes: effect of surfactant/CEC ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3), 401–407.

    Article  CAS  Google Scholar 

  44. Kora, A. J., Beedu, S. R., & Jayaraman, A. (2012). Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic and Medicinal Chemistry Letters, 2, 17.

    Article  Google Scholar 

  45. Lin, J. J., Lin, W. C., Li, S. D., Lin, C. Y., & Hsu, S. H. (2013). Evaluation of the antibacterial activity and biocompatibility for Ag NPs immobilized on nano silicate platelets. ACS appl Mathematical Intelligence, 5, 433–443.

    Article  CAS  Google Scholar 

  46. Incoronato, A. L., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. Journal of Dairy Science, 94, 1697–1704.

    Article  CAS  Google Scholar 

  47. Bezic, N., Skocibusic, M., Dinkic, V., & Radonic, A. (2003). Composition and antimi-crobial activity of Achillea clavennae L. essential oil. Phytotherapy Research, 17, 1037–1040.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled S. Abou-El-Sherbini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, M.S., Abou-El-Sherbini, K.S., Hamzawy, E.M.A. et al. Green Synthesis of Silver Nano-particles by Macrococcus bovicus and Its Immobilization onto Montmorillonite Clay for Antimicrobial Functionality. Appl Biochem Biotechnol 176, 2225–2241 (2015). https://doi.org/10.1007/s12010-015-1710-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1710-3

Keywords

Navigation