Skip to main content
Log in

Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kirst, H. A., Michel, K. H., Mynderase, J. S., Chio, E. H., Yao, R. C., Nakasukasa, W. M., Boeck, L., Occlowitz, J. L., Paschal, J. W. and Deeter, J. B., editors (1992). Discovery, isolation and structure elucidation of a family of structurally unique fermentation derived tetracyclic macrolides. ACS symposium series (USA).

  2. Kirst, H. A. (2010). The spinosyn family of insecticides: realizing the potential of natural products research. The Journal of Antibiotics, 63, 101–111.

    Article  CAS  Google Scholar 

  3. Hong, L., Zhao, Z., Melançon, C. E., Zhang, H., & Liu, H. W. (2008). In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa. Journal of the American Chemical Society, 130, 4954–4967.

    Article  CAS  Google Scholar 

  4. Waldron, C., Matsushima, P., Rosteck, P. R., Jr., Broughton, M. C., Turner, J., Madduri, K., Crawford, K. P., Merlo, D. J., & Baltz, R. H. (2001). Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chemical Biology, 8, 487–499.

    Article  CAS  Google Scholar 

  5. Kim, H. J., Ruszczycky, M. W., Choi, S. H., Liu, Y. N., & Liu, H. W. (2011). Enzyme-catalysed [4+ 2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature, 473, 109–112.

    Article  CAS  Google Scholar 

  6. Kim, H. J., White-Phillip, J. A., Ogasawara, Y., Shin, N., Isiorho, E. A., & Liu, H. W. (2010). Biosynthesis of spinosyn in Saccharopolyspora spinosa: synthesis of permethylated rhamnose and characterization of the functions of SpnH, SpnI, and SpnK. Journal of the American Chemical Society, 132, 2901–2903.

    Article  CAS  Google Scholar 

  7. Baltz, R. H. (2006). Molecular engineering approaches to peptide, polyketide and other antibiotics. Nature Biotechnology, 24, 1533–1540.

    Article  CAS  Google Scholar 

  8. Xue, C. Y., Duan, Y. J., Zhao, F. L., & Lu, W. Y. (2013). Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochemical Engineering Journal, 72, 90–95.

    Article  CAS  Google Scholar 

  9. Strobel, R. J., Jr., & Nakatsukasa, W. M. (1993). Response surface methods for optimizing Saccharopolyspora spinosa, a novel macrolide producer. Journal Industrial Microbiol & Biotechnol, 11(2), 121–127.

    Article  CAS  Google Scholar 

  10. Luo, Y. S., Kou, X. X., Ding, X. Z., Hu, S. B., Tang, Y., Li, W. P., Huang, F., Yang, Q., Chen, H. N., & Xia, L. Q. (2012). Promotion of spinosad biosynthesis by chromosomal integration of the Vitreoscilla hemoglobin gene in Saccharopolyspora spinosa. Science China. Life Sciences, 55, 172–180.

    Article  CAS  Google Scholar 

  11. Liang, Y., Lu, W. Y., & Wen, J. P. (2009). Improvement of Saccharopolyspora spinosa and the kinetic analysis for spinosad production. Applied Biochemistry and Biotechnology, 152, 440–448.

    Article  CAS  Google Scholar 

  12. Li, J. A. and Han, L. M. (2012). Methord of spinosad crude extracting. CN Patent 101560231 B.

  13. Baker, P. J. (1993). Process for isolatingA83543 and its components. US Patent 5227295 A.

  14. Xia, L. Q., Ding, X. Z., Yu, Z. Q., Yang,W. and Wu, W. (2013). Process for extracting pleocidinfrom fermentation liquor of Saccharopolyspora spinosa. CN Patent 101906124.

  15. Ferras, E., Minier, M., & Goma, G. (1986). Acetonobutylic fermentation: improvement of performances by coupling continuous fermentation and ultrafiltration. Biotechnology and Bioengineering, 28, 523–533.

    Article  CAS  Google Scholar 

  16. Kwon, Y. J., Kaul, R., & Mattiasson, B. (1996). Extractive lactic acid fermentation in poly (ethyleneimine)-based aqueous two-phase system. Biotechnology and Bioengineering, 50, 280–290.

    Article  CAS  Google Scholar 

  17. Zhong, Z., Xu, F., Cao, Y., Low, Z. X., Zhang, F. and Xing, W. (2014). Purifying condensed water with ceramic ultrafiltration membranes. Journal Chemical. Technology and Biotechnol

  18. Liu, C., & Wu, X. (1998). Optimization of operation parameters in ultrafiltration process. Journal of Biotechnology, 66, 195–202.

    Article  CAS  Google Scholar 

  19. Pérez-Silva, I., Rodríguez, J. A., Ramírez-Silva, M. T., & Páez-Hernández, M. E. (2012). Determination of oxytetracycline in milk samples by polymer inclusion membrane separation coupled to high performance liquid chromatography. Analytica Chimica Acta, 718, 42–46.

    Article  Google Scholar 

  20. Lee, S. C., Lee, K. H., Hyun, G. H., & Lee, W. K. (1997). Continuous extraction of penicillin G by an emulsion liquid membrane in a countercurrent extraction column. Journal Membrane Science, 124, 43–51.

    Article  CAS  Google Scholar 

  21. Xue, C. Y., Zhang, X. M., Yu, Z. H., Zhao, F. L., Wang, M. L., & Lu, W. Y. (2013). Up-regulated spinosad pathway coupling with the increased concentration of acetyl-CoA and malonyl-CoA contributed to the increase of spinosad in the presence of exogenous fatty acid. Biochemical Engineering Journal, 81, 47–53.

    Article  CAS  Google Scholar 

  22. Benincasa, C., Perri, E., Iannotta, N., & Scalercio, S. (2011). LC/ESI–MS/MS method for the identification and quantification of spinosad residues in olive oils. Food Chemistry, 125, 1116–1120.

    Article  CAS  Google Scholar 

  23. Hua, Z., Chen, J., Lun, S., & Wang, X. (2003). Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 37, 4143–4150.

    Article  CAS  Google Scholar 

  24. Ahimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27, 749–754.

    Article  CAS  Google Scholar 

  25. Liu, J., Yuan, X., Zeng, G., Shi, J., & Chen, S. (2006). Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochemistry, 41, 2347–2351.

    Article  CAS  Google Scholar 

  26. Ebune, A., Al-Asheh, S., & Duvnjak, Z. (1995). Effects of phosphate, surfactants and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid-state fermentation. Bioresource Technology, 54, 241–247.

    Article  CAS  Google Scholar 

  27. Ohta, K., & Hayashida, S. (1983). Role of Tween 80 and monoolein in a lipid-sterol-protein complex which enhances ethanol tolerance of sake yeasts. Applied and Environmental Microbiology, 46, 821–825.

    CAS  Google Scholar 

  28. Ghosh, R., Wan, Y., Cui, Z., & Hale, G. (2003). Parameter scanning ultrafiltration: rapid optimisation of protein separation. Biotechnology and Bioengineering, 81, 673–682.

    Article  CAS  Google Scholar 

  29. Yu, S. C., Gao, C. J., Su, H. X., & Liu, M. H. (2001). Nanofiltration used for desalination and concentration in dye production. Desalination, 140, 97–100.

    Article  CAS  Google Scholar 

  30. Hassani, A. H., Mirzayee, R., Nasseri, S., Borghei, M., Gholami, M., & Torabifar, B. (2008). Nanofiltration process on dye removal from simulated textile wastewater. International Journal of Environmental Science and Technology, 5, 401–408.

    Article  CAS  Google Scholar 

  31. Cleveland, C. B., Bormett, G. A., Saunders, D. G., Powers, F. L., McGibbon, A. S., Reeves, G. L., Rutherford, L., & Balcer, J. L. (2002). Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems. Journal of Agricultural and Food Chemistry, 50, 3244–3256.

    Article  CAS  Google Scholar 

  32. Hu, X. Z. (2005). Study on the isolation and purification of spinosad. Hubei, CN: MA thesis, Huazhong Agricultural University.

    Google Scholar 

  33. Qin, W. H. (2010). Research on extraction and purification of spinosad. Wuhan, CN: MA thesis, Wuhan University of Technology.

    Google Scholar 

  34. Lu, L., Li, J. A. and Han, L. M. (2011). Methord for spinosad fermentation liquid pigment removal. CN Patents 101659685 B.

  35. Baker, P. J. (1991). A83543 recovery process. WO Patent 1991006552 A1

  36. Xia, C. Y., Wang, C., Wu, J. L., Zou, Q. L., Li, C., & Zhang, X. L. (2014). Study on the isolation and purification of spinosa. Journal of the Chinese Cereals and Oils Association, 29, 95–101.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 21076148 and 31270087) and the Plan for Tianjin Science and Technology Support (No 11ZCKFSY0100).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Lu.

Additional information

Fanglong Zhao and Chuanbo Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Zhang, C., Yin, J. et al. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method. Appl Biochem Biotechnol 176, 2144–2156 (2015). https://doi.org/10.1007/s12010-015-1704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1704-1

Keywords

Navigation